skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 28, 2026

Title: Observations of Fast Local Loss of High‐Energy Ring Current Protons Associated With Deepening Local Minimum in Phase Space Density
Abstract The development of a deepening local minimum in phase space density (PSD)‐ profile indicates fast local loss potentially caused by wave‐induced scattering. The identification and characterization of proton PSD deepening minima are important for investigating the ring current loss and overall dynamics. Using multiyear Van Allen Probes observations, we analyze ∼10–100s keV proton PSD and report >100 keV proton deepening PSD minima for the first time. The overall occurrence rates of proton deepening local minimum peaks at ∼3%, mainly located at  = 4.5–5.0 near the plasmapause. The occurrence rate increases with the decrease of AL index and increase of solar wind dynamic pressure. The theoretical resonance energy of protons with typical He‐band electromagnetic ion cyclotron (EMIC) waves agrees with the energy of protons with deepening PSD minima. Thus, EMIC waves are the likely cause of the deepening PSD minimum and contribute to the fast local loss of ring current protons.  more » « less
Award ID(s):
2131012
PAR ID:
10634390
Author(s) / Creator(s):
; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
52
Issue:
4
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In the inner magnetosphere, fast magnetosonic waves (MS waves) are known to resonantly interact with ring current protons, causing these protons to gain energy preferentially in the direction perpendicular to the background magnetic field. An anisotropic distribution of enhanced ring current protons is a necessary condition to excite electromagnetic ion cyclotron (EMIC) waves which are known to facilitate a rapid depletion of ultra‐relativistic electrons in the outer radiation belt. So, when a simultaneous observation of high‐frequency EMIC (HFEMIC) waves, anisotropic low‐energy protons, and MS waves was first reported, a chain of energy flow from MS waves to HFEMIC waves through proton heating was naturally proposed. In this study, we carry out a statistical analysis using Van Allen Probes data to provide deeper insights into this energy pathway. Our results show that the occurrence of HFEMIC waves exhibits good correlation with the enhanced flux and anisotropy of low‐energy protons, but the correlation between the low‐energy protons and the concurrent MS waves is rather poor. The latter result is given support by quasilinear diffusion analysis, indicating negligible momentum diffusion rates at sub‐keV energies, unless MS wave frequency gets very close to the proton cyclotron frequency (which constitutes only a small number of the cases). The fact that the first chain of the coupling is statistically inconclusive calls for an alternative explanation for the major source of the low‐energy anisotropic proton population in the inner magnetosphere. 
    more » « less
  2. Abstract Understanding local loss processes in Earth’s radiation belts is critical to understanding their overall structure. Electromagnetic ion cyclotron waves can cause rapid loss of multi‐MeV electrons in the radiation belts. These loss effects have been observed at a range ofL* values, recently as low asL* = 3.5. Here, we present a case study of an event where a local minimum develops in multi‐MeV electron phase space density (PSD) nearL* = 3.5 and evaluate the possibility of electromagnetic ion cyclotron (EMIC) waves in contributing to the observed loss feature. Signatures of EMIC waves are shown including rapid local loss and pitch angle bite outs. Analysis of the wave power spectral density during the event shows EMIC wave occurrence at higherL* values. Using representative wave parameters, we calculate minimum resonant energies, diffusion coefficients, and simulate the evolution of electron PSD during this event. From these results, we find that O+ band EMIC waves could be contributing to the local loss feature during this event. O+ band EMIC waves are uncommon, but do occur in theseL* ranges, and therefore may be a significant driver of radiation belt dynamics under certain preconditioning of the radiation belts. 
    more » « less
  3. Abstract Electromagnetic Ion Cyclotron (EMIC) wave scattering has been proved to be responsible for the fast loss of both radiation belt (RB) electrons and ring current (RC) protons. However, its role in the concurrent dropout of these two co‐located populations remains to be quantified. In this work, we study the effect of EMIC wave scattering on both populations during the 27 February 2014 storm by employing the global physics‐based RAM‐SCB model. Throughout this storm event, MeV RB electrons and 100s keV RC protons experienced simultaneous dropout following the occurrence of intense EMIC waves. By implementing data‐driven initial and boundary conditions, we perform simulations for both populations through the interplay with EMIC waves and compare them against Van Allen Probes observations. The results indicate that by including EMIC wave scattering loss, especially by the He‐band EMIC waves, the model aligns closely with data for both populations. Additionally, we investigate the simulated pitch angle distributions (PADs) for both populations. Including EMIC wave scattering in our model predicts a 90° peaked PAD for electrons with stronger losses at lower pitch angles, while protons exhibit an isotropic PAD with enhanced losses at pitch angles above 40°. Furthermore, our model predicts considerable precipitation of both particle populations, predominantly confined to the afternoon to midnight sector (12 hr < MLT < 24 hr) during the storm's main phase, corresponding closely with the presence of EMIC waves. 
    more » « less
  4. Abstract We evaluate the diffusive and nonlinear scattering of ring current protons by electromagnetic ion cyclotron (EMIC) waves in the Earth's inner magnetosphere using test particle simulations. EMIC waves are commonly observed inside and outside the plasmasphere with wave amplitudes ranging from 100 pT to several nT. Field‐aligned EMIC waves can scatter 1 keV–1 MeV protons counter‐streaming with respect to the waves through first order cyclotron resonance. Through the analyses of the proton equatorial pitch angle variations along the field line, our simulations reveal the typical interaction features including quasilinear diffusion for small wave amplitudes, phase trapping and bunching at intermediate and large pitch angles, anomalous phase trapping and positive phase bunching at small pitch angles, and non‐resonant scattering at pitch angles and energies outside the resonance regime. Using different wave amplitudes from 100 pT to 5 nT, we compared the modeling results of proton equatorial pitch angle variations between quasilinear and test particle simulations, and between diffusive scattering and advective effects. For monochromatic He‐band EMIC waves atL = 5, the interaction between protons and EMIC waves with amplitudes below 500 pT could be described as a diffusive process and quantified by quasilinear theory; nonlinear interactions and advection effects become important for wave amplitudes larger than 1 nT. The interactions between EMIC waves and ring current protons are analogous to the interactions between whistler‐mode chorus waves and radiation belt electrons described in previous studies, despite the quantitative differences in the wave amplitude threshold of quasilinear diffusion applicability. 
    more » « less
  5. Abstract Electromagnetic ion cyclotron (EMIC) waves can drive precipitation of tens of keV protons and relativistic electrons, and are a potential candidate for causing radiation belt flux dropouts. In this study, we quantitatively analyze three cases of EMIC‐driven precipitation, which occurred near the dusk sector observed by multiple Low‐Earth‐Orbiting (LEO) Polar Operational Environmental Satellites/Meteorological Operational satellite programme (POES/MetOp) satellites. During EMIC wave activity, the proton precipitation occurred from few tens of keV up to hundreds of keV, while the electron precipitation was mainly at relativistic energies. We compare observations of electron precipitation with calculations using quasi‐linear theory. For all cases, we consider the effects of other magnetospheric waves observed simultaneously with EMIC waves, namely, plasmaspheric hiss and magnetosonic waves, and find that the electron precipitation at MeV energies was predominantly caused by EMIC‐driven pitch angle scattering. Interestingly, each precipitation event observed by a LEO satellite extended over a limited L shell region (ΔL ~ 0.3 on average), suggesting that the pitch angle scattering caused by EMIC waves occurs only when favorable conditions are met, likely in a localized region. Furthermore, we take advantage of the LEO constellation to explore the occurrence of precipitation at different L shells and magnetic local time sectors, simultaneously with EMIC wave observations near the equator (detected by Van Allen Probes) or at the ground (measured by magnetometers). Our analysis shows that although EMIC waves drove precipitation only in a narrow ΔL, electron precipitation was triggered at various locations as identified by POES/MetOp over a rather broad region (up to ~4.4 hr MLT and ~1.4 Lshells) with similar patterns between satellites. 
    more » « less