skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Is a Malleable Active Site Loop the Key to High Substrate Promiscuity? Hybrid, Biocatalytic Route to Structurally Diverse Taxoid Side Chains with Remarkable Dual Stereocontrol
Abstract These studies reveal the first structure ofClostridium acetobutylicumalcohol dehydrogenase (CaADH), a protein exhibiting remarkable substrate promiscuity and stereochemical fidelity. The CaADH enzyme is utilized here for synthesizing 20 potential aryl isoserine side chains for the Taxotere family of tubulin‐binding chemotherapeutics. The approach involves dynamic reductive kinetic resolution (DYRKR) upon the corresponding α‐chloro‐β‐keto esters, showing high D‐synstereoselectivity, including those leading to the clinically relevant milataxel (Ar = 2‐furyl) and simotaxel (Ar = 2‐thienyl) side chains. Furthermore, various cross‐coupling chemistries performed on thep‐bromophenyl isoserine side chain significantly enhance the structural diversity of the taxoid side chain library obtained (16 additional taxoid side chains). The CaADH structure is notable: (i) the nicotinamide cofactor is bound in ananti‐conformation, with the amide carbonyl occupying the ketone binding pocket, and (ii) a flexible loop near the active site likely contributes to the remarkable substrate promiscuity observed in CaADH. We present our perspective on the dynamic nature of the CaADH active site through molecular dynamics simulation, proposing a halogen bonding model as a potential mechanism for the remarkable selectivity for an (S)‐configured C─Cl bond, in addition to the D‐facial selectivity, demonstrated across 20 diverse substrates by this remarkable short‐chain dehydrogenase enzyme.  more » « less
Award ID(s):
2023250
PAR ID:
10634434
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
64
Issue:
36
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The kynurenine pathway is the primary route for L-tryptophan degradation in mammals. Intermediates and side products of this pathway are involved in immune response and neurodegenerative diseases. This makes the study of enzymes, especially those from mammalian sources, of the kynurenine pathway worthwhile. Recent studies on a bacterial version of an enzyme of this pathway, 2-aminomuconate semialdehyde (2-AMS) dehydrogenase (AMSDH), have provided a detailed understanding of the catalytic mechanism and identified residues conserved for muconate semialdehyde recognition and activation. Findings from the bacterial enzyme have prompted the reconsideration of the function of a previously identified human aldehyde dehydrogenase, ALDH8A1 (or ALDH12), which was annotated as a retinal dehydrogenase based on its ability to preferentially oxidize 9-cis-retinal over trans-retinal. Here, we provide compelling bioinformatics and experimental evidence that human ALDH8A1 should be reassigned to the missing 2-AMS dehydrogenase of the kynurenine metabolic pathway. For the first time, the product of the semialdehyde oxidation by AMSDH is also revealed by NMR and high-resolution MS. We found that ALDH8A1 catalyzes the NAD+ -dependent oxidation of 2- AMS with a catalytic efficiency equivalent to that of AMSDH from the bacterium Pseudomonas fluorescens. Substitution of active-site residues required for substrate recognition, binding, and isomerization in the bacterial enzyme resulted in human ALDH8A1 variants with 160-fold increased Km or no detectable activity. In conclusion, this molecular study establishes an additional enzymatic step in an important human pathway for tryptophan catabolism. 
    more » « less
  2. In this study, interactions of the catalytically active binuclear form of glycerophosphodiesterase (GpdQ) with four chemically diverse substrates, i.e. NPP (a phosphomonoester), BNPP and GPE (both phosphodiesters), and paraoxon (a phosphotriester) have been investigated using all-atom molecular dynamics (MD) simulations. The roles of metal ions and key amino acid residues, coordination flexibility, and dynamic transformations in all enzyme–substrate complexes have been elucidated. The roles of important first and second coordination shell residues in substrate binding and coordination flexibility of the enzyme suggested by simulations are supported by experimental data. The chemical nature of the substrate is found to influence the mode of binding, electrostatic surface potential, metal–metal distance, and reorganization of the active site. The experimentally proposed association between the substrate binding and coordination flexibility is analyzed using principal component analysis (PCA), movements of loops, and root-mean-square-fluctuations (RMSF) as parameters. The PCA of these substrates provides different energy basins, i.e. one, three, two and five for NPP, BNPP, GPE, and paraoxon, respectively. Additionally, the area of an irregular hexagon (268.3, 288.9, 350.8, and 362.5 Å 2 ) formed by the residues on these loops illustrates their distinct motions. The substrate binding free energies of NPP, BNPP, and GPE are quite close (22.4–24.3 kcal mol −1 ), but paraoxon interacts with the smallest binding free energy (14.1 kcal mol −1 ). The metal binding energies in the presence of these substrates are substantially different, i.e. the lowest for NPP and the highest for paraoxon. These results thus provide deeper insight into the chemical promiscuity and coordination flexibility of this important enzyme. 
    more » « less
  3. null (Ed.)
    Abstract Aldehyde dehydrogenases (ALDHs) catalyze the conversion of various aliphatic and aromatic aldehydes into corresponding carboxylic acids. Traditionally considered as housekeeping enzymes, new biochemical roles are being identified for members of ALDH family. Recent work showed that AldA from the plant pathogen Pseudomonas syringae strain PtoDC3000 (PtoDC3000) functions as an indole-3-acetaldehyde dehydrogenase for the synthesis of indole-3-acetic acid (IAA). IAA produced by AldA allows the pathogen to suppress salicylic acid-mediated defenses in the model plant Arabidopsis thaliana. Here we present a biochemical and structural analysis of the AldA indole-3-acetaldehyde dehydrogenase from PtoDC3000. Site-directed mutants targeting the catalytic residues Cys302 and Glu267 resulted in a loss of enzymatic activity. The X-ray crystal structure of the catalytically inactive AldA C302A mutant in complex with IAA and NAD+ showed the cofactor adopting a conformation that differs from the previously reported structure of AldA. These structures suggest that NAD+ undergoes a conformational change during the AldA reaction mechanism similar to that reported for human ALDH. Site-directed mutagenesis of the IAA binding site indicates that changes in the active site surface reduces AldA activity; however, substitution of Phe169 with a tryptophan altered the substrate selectivity of the mutant to prefer octanal. The present study highlights the inherent biochemical versatility of members of the ALDH enzyme superfamily in P. syringae. 
    more » « less
  4. Abstract The retinal light response in animals originates from the photoisomerization of an opsin-coupled 11-cis-retinaldehyde chromophore. This visual chromophore is enzymatically produced through the action of carotenoid cleavage dioxygenases. Vertebrates require two carotenoid cleavage dioxygenases, β-carotene oxygenase 1 and retinal pigment epithelium 65 (RPE65), to form 11-cis-retinaldehyde from carotenoid substrates, whereas invertebrates such as insects use a single enzyme known as Neither Inactivation Nor Afterpotential B (NinaB). RPE65 and NinaB coupletrans–cisisomerization with hydrolysis and oxygenation, respectively, but the mechanistic relationship of their isomerase activities remains unknown. Here we report the structure of NinaB, revealing details of its active site architecture and mode of membrane binding. Structure-guided mutagenesis studies identify a residue cluster deep within the NinaB substrate-binding cleft that controls its isomerization activity. Our data demonstrate that isomerization activity is mediated by distinct active site regions in NinaB and RPE65—an evolutionary convergence that deepens our understanding of visual system diversity. 
    more » « less
  5. Abstract De novo enzyme design has sought to introduce active sites and substrate-binding pockets that are predicted to catalyse a reaction of interest into geometrically compatible native scaffolds1,2, but has been limited by a lack of suitable protein structures and the complexity of native protein sequence–structure relationships. Here we describe a deep-learning-based ‘family-wide hallucination’ approach that generates large numbers of idealized protein structures containing diverse pocket shapes and designed sequences that encode them. We use these scaffolds to design artificial luciferases that selectively catalyse the oxidative chemiluminescence of the synthetic luciferin substrates diphenylterazine3and 2-deoxycoelenterazine. The designed active sites position an arginine guanidinium group adjacent to an anion that develops during the reaction in a binding pocket with high shape complementarity. For both luciferin substrates, we obtain designed luciferases with high selectivity; the most active of these is a small (13.9 kDa) and thermostable (with a melting temperature higher than 95 °C) enzyme that has a catalytic efficiency on diphenylterazine (kcat/Km = 106 M−1 s−1) comparable to that of native luciferases, but a much higher substrate specificity. The creation of highly active and specific biocatalysts from scratch with broad applications in biomedicine is a key milestone for computational enzyme design, and our approach should enable generation of a wide range of luciferases and other enzymes. 
    more » « less