skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on October 1, 2026

Title: Tackling temporary names: interim solutions for the taxonomic impediment
Abstract Against a background of the climate and biodiversity crises, there is an urgent need for robust and citable biodiversity information for policy and management decisions. Species are fundamental units of biodiversity and underpin communication in biology. Delineating, describing, and naming species provide the foundation for tracking biodiversity. Taxonomists recognise over 2 million described species, the scientific names of which follow provisions of codes of nomenclature, providing stability for communication about biodiversity. However, described species represent only a fraction of global biodiversity. Current advances in the fields of molecular biology and the growing use of image-based identifications have resulted in an explosion of informal species names globally, herein referred to as temporary names, increasing the rate of discovery of undescribed species and cryptic species complexes. We define two categories of temporary names: Type 1 names that are delineated in a local context but not further assessed; and Type 2 names that have been taxonomically assessed and recognised as either new or part of an unresolved species complex. We explore the different types and uses of temporary names, indicate how they can be managed in a robust and standardised manner and demonstrate how biodiversity databases, such as WoRMS, can be expanded to allow the tracking of both formal and informal scientific names. We propose a solution for the expanding problem of temporary names by defining and recommending the addition of Type 2 temporary names to nomenclatural databases such as WoRMS. We provide practical recommendations on how such names should be selected for entry and then entered to databases in a standardised way. These recommendations are a small step forward, but their broad adoption would support the robust integration of informal and formal taxonomies.  more » « less
Award ID(s):
2001510
PAR ID:
10634529
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Springer Science
Date Published:
Journal Name:
Marine Biodiversity
Volume:
55
Issue:
5
ISSN:
1867-1616
Subject(s) / Keyword(s):
Dark taxa Open nomenclature Species-level diversity Taxonomy Temporary name
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Song, Hojun (Ed.)
    Abstract The classification of ants (Hymenoptera: Formicidae) has progressed in waves since the first 17 species were described by Linnaeus in the 1758 edition of Systema Naturae. Since then, over 18,000 species-rank names have accumulated for the global myrmecofauna, of which ~14,260 living and ~810 fossil species are valid. Here, we provide a synopsis of ant biodiversity and review the history and classification of the family, while highlighting the massive growth of the field in the new millennium. We observe that major transformation has occurred for ant classification due to advances in DNA sequencing technologies, model-based hypothesis testing, and imaging technologies. We therefore provide a revised and illustrated list of diagnostic character states for the higher clades of Formicidae, recognizing that vastly more work is to be done. To facilitate discussion and the systematic accumulation of evolutionary knowledge for the early evolution of the ants, we suggest an informal nomenclatural system for the higher clades of ants, based on names currently in use and a set of names that have been democratically selected by the authors. To guide future work on ant systematics, we summarize currently available databases and present perspectives on regions in need of biodiversity exploration, challenges facing the field, and the future of ant taxonomy. 
    more » « less
  2. Biodiversity genomics research requires reliable organismal identification, which can be difficult based on morphology alone. DNA-based identification using DNA barcoding can provide confirmation of species identity and resolve taxonomic issues but is rarely used in studies generating reference genomes. Here, we describe the development and implementation of DNA barcoding for the Darwin Tree of Life Project (DToL), which aims to sequence and assemble high quality reference genomes for all eukaryotic species in Britain and Ireland. We present a standardised framework for DNA barcode sequencing and data interpretation that is then adapted for diverse organismal groups. DNA barcoding data from over 12,000 DToL specimens has identified up to 20% of samples requiring additional verification, with 2% of seed plants and 3.5% of animal specimens subsequently having their names changed. We also make recommendations for future developments using new sequencing approaches and streamlined bioinformatic approaches. 
    more » « less
  3. Taxonomy is foundational to all biological sciences. Names allow us to organize and communicate information about biological groups. This process is critical for understanding and preserving the biodiversity of our planet. There are an estimated 8.7 million extant eukaryotes (Mora et al. 2011) and possibly as many as 1 trillion microbial species (Locey and Lennon 2016), with untold numbers of extinct taxa yet to be discovered in the fossil record. Accounting for all these taxa and maintaining their nomenclatural resources is one of the great challenges in biology. A few major hurdles in overcoming this challenge are the inability to find, share, and update taxonomic resources efficiently in real time. Efforts to standardize and continually update taxonomic names in a sustainable way have been limited. The problem is complex, and solutions must deal with the large backlog of names, a constant stream of new names, the confusing merging and splitting of taxonomic synonyms, the subjective nature of taxonomic concepts, and the fundamental limitations on available expertise and curators' time to prepare and maintain such resources. Hyperdiverse groups such as arthropods are especially challenging as there are relatively few experts on any given lineage and changes in taxonomy can be rapid as new species are continually being discovered and described. After struggling to wrangle taxonomic resources in support of specimen digitization efforts, I began development of TaxoTracker as a proof-of-concept, web-based platform for facilitating expert curation and dissemination of biological taxonomies. TaxoTracker is still in development, but its current and planned functionalities will be shown through a combination of demonstration and discussion. TaxoTracker identifies and implements features that attempt to simplify the production and maintenance of expert-curated resources, while also limiting the responsibilities that are placed on individual experts who are often already overburdened and underfunded. These features include: Centralized, searchable, and easily obtained resources in useful formats Community-driven, citation-based curatorial suggestions Expert-reviewed curatorial recommendations Consensus-driven curatorial decisions Effort tracking and credit for suggestions and reviews Centralized, searchable, and easily obtained resources in useful formats Community-driven, citation-based curatorial suggestions Expert-reviewed curatorial recommendations Consensus-driven curatorial decisions Effort tracking and credit for suggestions and reviews 
    more » « less
  4. Abstract A working group from the Global Library of Underwater Biological Sounds effort collaborated with the World Register of Marine Species (WoRMS) to create an inventory of species confirmed or expected to produce sound underwater. We used several existing inventories and additional literature searches to compile a dataset categorizing scientific knowledge of sonifery for 33,462 species and subspecies across marine mammals, other tetrapods, fishes, and invertebrates. We found 729 species documented as producing active and/or passive sounds under natural conditions, with another 21,911 species deemed likely to produce sounds based on evaluated taxonomic relationships. The dataset is available on both figshare and WoRMS where it can be regularly updated as new information becomes available. The data can also be integrated with other databases (e.g., SeaLifeBase, Global Biodiversity Information Facility) to advance future research on the distribution, evolution, ecology, management, and conservation of underwater soniferous species worldwide. 
    more » « less
  5. Romanach, Stephanie S. (Ed.)
    Massive biological databases of species occurrences, or georeferenced locations where a species has been observed, are essential inputs for modeling present and future species distributions. Location accuracy is often assessed by determining whether the observation geocoordinates fall within the boundaries of the declared political divisions. This otherwise simple validation is complicated by the difficulty of matching political division names to the correct geospatial object. Spelling errors, abbreviations, alternative codes, and synonyms in multiple languages present daunting name disambiguation challenges. The inability to resolve political division names reduces usable data, and analysis of erroneous observations can lead to flawed results. Here, we present the Geographic Name Resolution Service (GNRS), an application for correcting, standardizing, and indexing world political division names. The GNRS resolves political division names against a reference database that combines names and codes from GeoNames with geospatial object identifiers from the Global Administrative Areas Database (GADM). In a trial resolution of political division names extracted from >270 million species occurrences, only 1.9%, representing just 6% of occurrences, matched exactly to GADM political divisions in their original form. The GNRS was able to resolve, completely or in part, 92% of the remaining 378,568 political division names, or 86% of the full biodiversity occurrence dataset. In assessing geocoordinate accuracy for >239 million species occurrences, resolution of political divisions by the GNRS enabled the detection of an order of magnitude more errors and an order of magnitude more error-free occurrences. By providing a novel solution to a significant data quality impediment, the GNRS liberates a tremendous amount of biodiversity data for quantitative biodiversity research. The GNRS runs as a web service and is accessible via an API, an R package, and a web-based graphical user interface. Its modular architecture is easily integrated into existing data validation workflows. 
    more » « less