skip to main content

This content will become publicly available on November 14, 2023

Title: Geographic name resolution service: A tool for the standardization and indexing of world political division names, with applications to species distribution modeling
Massive biological databases of species occurrences, or georeferenced locations where a species has been observed, are essential inputs for modeling present and future species distributions. Location accuracy is often assessed by determining whether the observation geocoordinates fall within the boundaries of the declared political divisions. This otherwise simple validation is complicated by the difficulty of matching political division names to the correct geospatial object. Spelling errors, abbreviations, alternative codes, and synonyms in multiple languages present daunting name disambiguation challenges. The inability to resolve political division names reduces usable data, and analysis of erroneous observations can lead to flawed results. Here, we present the Geographic Name Resolution Service (GNRS), an application for correcting, standardizing, and indexing world political division names. The GNRS resolves political division names against a reference database that combines names and codes from GeoNames with geospatial object identifiers from the Global Administrative Areas Database (GADM). In a trial resolution of political division names extracted from >270 million species occurrences, only 1.9%, representing just 6% of occurrences, matched exactly to GADM political divisions in their original form. The GNRS was able to resolve, completely or in part, 92% of the remaining 378,568 political division names, or 86% of the more » full biodiversity occurrence dataset. In assessing geocoordinate accuracy for >239 million species occurrences, resolution of political divisions by the GNRS enabled the detection of an order of magnitude more errors and an order of magnitude more error-free occurrences. By providing a novel solution to a significant data quality impediment, the GNRS liberates a tremendous amount of biodiversity data for quantitative biodiversity research. The GNRS runs as a web service and is accessible via an API, an R package, and a web-based graphical user interface. Its modular architecture is easily integrated into existing data validation workflows. « less
Authors:
; ; ; ; ; ; ; ; ;
Editors:
Romanach, Stephanie S.
Award ID(s):
1934790
Publication Date:
NSF-PAR ID:
10398738
Journal Name:
PLOS ONE
Volume:
17
Issue:
11
Page Range or eLocation-ID:
e0268162
ISSN:
1932-6203
Sponsoring Org:
National Science Foundation
More Like this
  1. Obeid, Iyad ; Picone, Joseph ; Selesnick, Ivan (Ed.)
    The Neural Engineering Data Consortium (NEDC) is developing a large open source database of high-resolution digital pathology images known as the Temple University Digital Pathology Corpus (TUDP) [1]. Our long-term goal is to release one million images. We expect to release the first 100,000 image corpus by December 2020. The data is being acquired at the Department of Pathology at Temple University Hospital (TUH) using a Leica Biosystems Aperio AT2 scanner [2] and consists entirely of clinical pathology images. More information about the data and the project can be found in Shawki et al. [3]. We currently have a National Science Foundation (NSF) planning grant [4] to explore how best the community can leverage this resource. One goal of this poster presentation is to stimulate community-wide discussions about this project and determine how this valuable resource can best meet the needs of the public. The computing infrastructure required to support this database is extensive [5] and includes two HIPAA-secure computer networks, dual petabyte file servers, and Aperio’s eSlide Manager (eSM) software [6]. We currently have digitized over 50,000 slides from 2,846 patients and 2,942 clinical cases. There is an average of 12.4 slides per patient and 10.5 slides per casemore »with one report per case. The data is organized by tissue type as shown below: Filenames: tudp/v1.0.0/svs/gastro/000001/00123456/2015_03_05/0s15_12345/0s15_12345_0a001_00123456_lvl0001_s000.svs tudp/v1.0.0/svs/gastro/000001/00123456/2015_03_05/0s15_12345/0s15_12345_00123456.docx Explanation: tudp: root directory of the corpus v1.0.0: version number of the release svs: the image data type gastro: the type of tissue 000001: six-digit sequence number used to control directory complexity 00123456: 8-digit patient MRN 2015_03_05: the date the specimen was captured 0s15_12345: the clinical case name 0s15_12345_0a001_00123456_lvl0001_s000.svs: the actual image filename consisting of a repeat of the case name, a site code (e.g., 0a001), the type and depth of the cut (e.g., lvl0001) and a token number (e.g., s000) 0s15_12345_00123456.docx: the filename for the corresponding case report We currently recognize fifteen tissue types in the first installment of the corpus. The raw image data is stored in Aperio’s “.svs” format, which is a multi-layered compressed JPEG format [3,7]. Pathology reports containing a summary of how a pathologist interpreted the slide are also provided in a flat text file format. A more complete summary of the demographics of this pilot corpus will be presented at the conference. Another goal of this poster presentation is to share our experiences with the larger community since many of these details have not been adequately documented in scientific publications. There are quite a few obstacles in collecting this data that have slowed down the process and need to be discussed publicly. Our backlog of slides dates back to 1997, meaning there are a lot that need to be sifted through and discarded for peeling or cracking. Additionally, during scanning a slide can get stuck, stalling a scan session for hours, resulting in a significant loss of productivity. Over the past two years, we have accumulated significant experience with how to scan a diverse inventory of slides using the Aperio AT2 high-volume scanner. We have been working closely with the vendor to resolve many problems associated with the use of this scanner for research purposes. This scanning project began in January of 2018 when the scanner was first installed. The scanning process was slow at first since there was a learning curve with how the scanner worked and how to obtain samples from the hospital. From its start date until May of 2019 ~20,000 slides we scanned. In the past 6 months from May to November we have tripled that number and how hold ~60,000 slides in our database. This dramatic increase in productivity was due to additional undergraduate staff members and an emphasis on efficient workflow. The Aperio AT2 scans 400 slides a day, requiring at least eight hours of scan time. The efficiency of these scans can vary greatly. When our team first started, approximately 5% of slides failed the scanning process due to focal point errors. We have been able to reduce that to 1% through a variety of means: (1) best practices regarding daily and monthly recalibrations, (2) tweaking the software such as the tissue finder parameter settings, and (3) experience with how to clean and prep slides so they scan properly. Nevertheless, this is not a completely automated process, making it very difficult to reach our production targets. With a staff of three undergraduate workers spending a total of 30 hours per week, we find it difficult to scan more than 2,000 slides per week using a single scanner (400 slides per night x 5 nights per week). The main limitation in achieving this level of production is the lack of a completely automated scanning process, it takes a couple of hours to sort, clean and load slides. We have streamlined all other aspects of the workflow required to database the scanned slides so that there are no additional bottlenecks. To bridge the gap between hospital operations and research, we are using Aperio’s eSM software. Our goal is to provide pathologists access to high quality digital images of their patients’ slides. eSM is a secure website that holds the images with their metadata labels, patient report, and path to where the image is located on our file server. Although eSM includes significant infrastructure to import slides into the database using barcodes, TUH does not currently support barcode use. Therefore, we manage the data using a mixture of Python scripts and manual import functions available in eSM. The database and associated tools are based on proprietary formats developed by Aperio, making this another important point of community-wide discussion on how best to disseminate such information. Our near-term goal for the TUDP Corpus is to release 100,000 slides by December 2020. We hope to continue data collection over the next decade until we reach one million slides. We are creating two pilot corpora using the first 50,000 slides we have collected. The first corpus consists of 500 slides with a marker stain and another 500 without it. This set was designed to let people debug their basic deep learning processing flow on these high-resolution images. We discuss our preliminary experiments on this corpus and the challenges in processing these high-resolution images using deep learning in [3]. We are able to achieve a mean sensitivity of 99.0% for slides with pen marks, and 98.9% for slides without marks, using a multistage deep learning algorithm. While this dataset was very useful in initial debugging, we are in the midst of creating a new, more challenging pilot corpus using actual tissue samples annotated by experts. The task will be to detect ductal carcinoma (DCIS) or invasive breast cancer tissue. There will be approximately 1,000 images per class in this corpus. Based on the number of features annotated, we can train on a two class problem of DCIS or benign, or increase the difficulty by increasing the classes to include DCIS, benign, stroma, pink tissue, non-neoplastic etc. Those interested in the corpus or in participating in community-wide discussions should join our listserv, nedc_tuh_dpath@googlegroups.com, to be kept informed of the latest developments in this project. You can learn more from our project website: https://www.isip.piconepress.com/projects/nsf_dpath.« less
  2. “What is crucial for your ability to communicate with me… pivots on the recipient’s capacity to interpret—to make good inferential sense of the meanings that the declarer is able to send” (Rescher 2000, p148). Conventional approaches to reconciling taxonomic information in biodiversity databases have been based on string matching for unique taxonomic name combinations (Kindt 2020, Norman et al. 2020). However, in their original context, these names pertain to specific usages or taxonomic concepts, which can subsequently vary for the same name as applied by different authors. Name-based synonym matching is a helpful first step (Guala 2016, Correia et al. 2018), but may still leave considerable ambiguity regarding proper usage (Fig. 1). Therefore, developing "taxonomic intelligence" is the bioinformatic challenge to adequately represent, and subsequently propagate, this complex name/usage interaction across trusted biodiversity data networks. How do we ensure that senders and recipients of biodiversity data not only can share messages but do so with “good inferential sense” of their respective meanings? Key obstacles have involved dealing with the complexity of taxonomic name/usage modifications through time, both in terms of accounting for and digitally representing the long histories of taxonomic change in most lineages. An important critique of proposals tomore »use name-to-usage relationships for data aggregation has been the difficulty of scaling them up to reach comprehensive coverage, in contrast to name-based global taxonomic hierarchies (Bisby 2011). The Linnaean system of nomenclature has some unfortunate design limitations in this regard, in that taxonomic names are not unique identifiers, their meanings may change over time, and the names as a string of characters do not encode their proper usage, i.e., the name “Genus species” does not specify a source defining how to use the name correctly (Remsen 2016, Sterner and Franz 2017). In practice, many people provide taxonomic names in their datasets or publications but not a source specifying a usage. The information needed to map the relationships between names and usages in taxonomic monographs or revisions is typically not presented it in a machine-readable format. New approaches are making progress on these obstacles. Theoretical advances in the representation of taxonomic intelligence have made it increasingly possible to implement efficient querying and reasoning methods on name-usage relationships (Chen et al. 2014, Chawuthai et al. 2016, Franz et al. 2015). Perhaps most importantly, growing efforts to produce name-usage mappings on a medium scale by data providers and taxonomic authorities suggest an all-or-nothing approach is not required. Multiple high-profile biodiversity databases have implemented internal tools for explicitly tracking conflicting or dynamic taxonomic classifications, including eBird using concept relationships from AviBase (Lepage et al. 2014); NatureServe in its Biotics database; iNaturalist using its taxon framework (Loarie 2020); and the UNITE database for fungi (Nilsson et al. 2019). Other ongoing projects incorporating taxonomic intelligence include the Flora of Alaska (Flora of Alaska 2020), the Mammal Diversity Database (Mammal Diversity Database 2020) and PollardBase for butterfly population monitoring (Campbell et al. 2020).« less
  3. The 3i World Auchenorrhyncha database (http://dmitriev.speciesfile.org) is being migrated into TaxonWorks (http://taxonworks.org) and comprises nomenclatural data for all known Auchenorrhyncha taxa (leafhoppers, planthoppers, treehoppers, cicadas, spittle bugs). Of all those scientific names, 8,700 are unique genus-group names (which include valid genera and subgenera as well as their synonyms). According to the Rules of Zoological Nomenclature, a properly formed species-group name when combined with a genus-group name must agree with the latter in gender if the species-group name is or ends with a Latin or Latinized adjective or participle. This provides a double challenge for researchers describing new or citing existing taxa. For each species, the knowledge about the part of speech is essential information (nouns do not change their form when associated with different generic names). For the genus, the knowledge of the gender is essential information. Every time the species is transferred from one genus to another, its ending may need to be transformed to make a proper new scientific name (a binominal name). In modern day practice, it is important, when establishing a new name, to provide information about etymology of this name and the ways it should be used in the future publications: the grammatical gender formore »a genus, and the part of speech for a species. The older names often do not provide enough information about their etymology to make proper construction of scientific names. That is why in the literature, we can find numerous cases where a scientific name is not formed in conformity to the Rules of Nomenclature. An attempt was made to resolve the etymology of the generic names in Auchenorrhyncha to unify and clarify nomenclatural issues in this group of insects. In TaxonWorks, the rules of nomenclature are defined using the NOMEN onthology (https://github.com/SpeciesFileGroup/nomen).« less
  4. Making the most of biodiversity data requires linking observations of biological species from multiple sources both efficiently and accurately (Bisby 2000, Franz et al. 2016). Aggregating occurrence records using taxonomic names and synonyms is computationally efficient but known to experience significant limitations on accuracy when the assumption of one-to-one relationships between names and biological entities breaks down (Remsen 2016, Franz and Sterner 2018). Taxonomic treatments and checklists provide authoritative information about the correct usage of names for species, including operational representations of the meanings of those names in the form of range maps, reference genetic sequences, or diagnostic traits. They increasingly provide taxonomic intelligence in the form of precise description of the semantic relationships between different published names in the literature. Making this authoritative information Findable, Accessible, Interoperable, and Reusable (FAIR; Wilkinson et al. 2016) would be a transformative advance for biodiversity data sharing and help drive adoption and novel extensions of existing standards such as the Taxonomic Concept Schema and the OpenBiodiv Ontology (Kennedy et al. 2006, Senderov et al. 2018). We call for the greater, global Biodiversity Information Standards (TDWG) and taxonomy community to commit to extending and expanding on how FAIR applies to biodiversity data and includemore »practical targets and criteria for the publication and digitization of taxonomic concept representations and alignments in taxonomic treatments, checklists, and backbones. As a motivating case, consider the abundantly sampled North American deer mouse— Peromyscus maniculatus (Wagner 1845)—which was recently split from one continental species into five more narrowly defined forms, so that the name P. maniculatus is now only applied east of the Mississippi River (Bradley et al. 2019, Greenbaum et al. 2019). That single change instantly rendered ambiguous ~7% of North American mammal records in the Global Biodiversity Information Facility (n=242,663, downloaded 2021-06-04; GBIF.org 2021) and ⅓ of all National Ecological Observatory Network (NEON) small mammal samples (n=10,256, downloaded 2021-06-27). While this type of ambiguity is common in name-based databases when species are split, the example of P. maniculatus is particularly striking for its impact upon biological questions ranging from hantavirus surveillance in North America to studies of climate change impacts upon rodent life-history traits. Of special relevance to NEON sampling is recent evidence suggesting deer mice potentially transmit SARS-CoV-2 (Griffin et al. 2021). Automating the updating of occurrence records in such cases and others will require operational representations of taxonomic concepts—e.g., range maps, reference sequences, and diagnostic traits—that are FAIR in addition to taxonomic concept alignment information (Franz and Peet 2009). Despite steady progress, it remains difficult to find, access, and reuse authoritative information about how to apply taxonomic names even when it is already digitized. It can also be difficult to tell without manual inspection whether similar types of concept representations derived from multiple sources, such as range maps or reference sequences selected from different research articles or checklists, are in fact interoperable for a particular application. The issue is therefore different from important ongoing efforts to digitize trait information in species circumscriptions, for example, and focuses on how already digitized knowledge can best be packaged to inform human experts and artifical intelligence applications (Sterner and Franz 2017). We therefore propose developing community guidelines and criteria for FAIR taxonomic concept representations as "semantic artefacts" of general relevance to linked open data and life sciences research (Le Franc et al. 2020).« less
  5. Abstract Purpose The ability to identify the scholarship of individual authors is essential for performance evaluation. A number of factors hinder this endeavor. Common and similarly spelled surnames make it difficult to isolate the scholarship of individual authors indexed on large databases. Variations in name spelling of individual scholars further complicates matters. Common family names in scientific powerhouses like China make it problematic to distinguish between authors possessing ubiquitous and/or anglicized surnames (as well as the same or similar first names). The assignment of unique author identifiers provides a major step toward resolving these difficulties. We maintain, however, that in and of themselves, author identifiers are not sufficient to fully address the author uncertainty problem. In this study we build on the author identifier approach by considering commonalities in fielded data between authors containing the same surname and first initial of their first name. We illustrate our approach using three case studies. Design/methodology/approach The approach we advance in this study is based on commonalities among fielded data in search results. We cast a broad initial net—i.e., a Web of Science (WOS) search for a given author’s last name, followed by a comma, followed by the first initial of his ormore »her first name (e.g., a search for ‘John Doe’ would assume the form: ‘Doe, J’). Results for this search typically contain all of the scholarship legitimately belonging to this author in the given database (i.e., all of his or her true positives), along with a large amount of noise, or scholarship not belonging to this author (i.e., a large number of false positives). From this corpus we proceed to iteratively weed out false positives and retain true positives. Author identifiers provide a good starting point—e.g., if ‘Doe, J’ and ‘Doe, John’ share the same author identifier, this would be sufficient for us to conclude these are one and the same individual. We find email addresses similarly adequate—e.g., if two author names which share the same surname and same first initial have an email address in common, we conclude these authors are the same person. Author identifier and email address data is not always available, however. When this occurs, other fields are used to address the author uncertainty problem. Commonalities among author data other than unique identifiers and email addresses is less conclusive for name consolidation purposes. For example, if ‘Doe, John’ and ‘Doe, J’ have an affiliation in common, do we conclude that these names belong the same person? They may or may not; affiliations have employed two or more faculty members sharing the same last and first initial. Similarly, it’s conceivable that two individuals with the same last name and first initial publish in the same journal, publish with the same co-authors, and/or cite the same references. Should we then ignore commonalities among these fields and conclude they’re too imprecise for name consolidation purposes? It is our position that such commonalities are indeed valuable for addressing the author uncertainty problem, but more so when used in combination. Our approach makes use of automation as well as manual inspection, relying initially on author identifiers, then commonalities among fielded data other than author identifiers, and finally manual verification. To achieve name consolidation independent of author identifier matches, we have developed a procedure that is used with bibliometric software called VantagePoint (see www.thevantagepoint.com) While the application of our technique does not exclusively depend on VantagePoint, it is the software we find most efficient in this study. The script we developed to implement this procedure is designed to implement our name disambiguation procedure in a way that significantly reduces manual effort on the user’s part. Those who seek to replicate our procedure independent of VantagePoint can do so by manually following the method we outline, but we note that the manual application of our procedure takes a significant amount of time and effort, especially when working with larger datasets. Our script begins by prompting the user for a surname and a first initial (for any author of interest). It then prompts the user to select a WOS field on which to consolidate author names. After this the user is prompted to point to the name of the authors field, and finally asked to identify a specific author name (referred to by the script as the primary author) within this field whom the user knows to be a true positive (a suggested approach is to point to an author name associated with one of the records that has the author’s ORCID iD or email address attached to it). The script proceeds to identify and combine all author names sharing the primary author’s surname and first initial of his or her first name who share commonalities in the WOS field on which the user was prompted to consolidate author names. This typically results in significant reduction in the initial dataset size. After the procedure completes the user is usually left with a much smaller (and more manageable) dataset to manually inspect (and/or apply additional name disambiguation techniques to). Research limitations Match field coverage can be an issue. When field coverage is paltry dataset reduction is not as significant, which results in more manual inspection on the user’s part. Our procedure doesn’t lend itself to scholars who have had a legal family name change (after marriage, for example). Moreover, the technique we advance is (sometimes, but not always) likely to have a difficult time dealing with scholars who have changed careers or fields dramatically, as well as scholars whose work is highly interdisciplinary. Practical implications The procedure we advance has the ability to save a significant amount of time and effort for individuals engaged in name disambiguation research, especially when the name under consideration is a more common family name. It is more effective when match field coverage is high and a number of match fields exist. Originality/value Once again, the procedure we advance has the ability to save a significant amount of time and effort for individuals engaged in name disambiguation research. It combines preexisting with more recent approaches, harnessing the benefits of both. Findings Our study applies the name disambiguation procedure we advance to three case studies. Ideal match fields are not the same for each of our case studies. We find that match field effectiveness is in large part a function of field coverage. Comparing original dataset size, the timeframe analyzed for each case study is not the same, nor are the subject areas in which they publish. Our procedure is more effective when applied to our third case study, both in terms of list reduction and 100% retention of true positives. We attribute this to excellent match field coverage, and especially in more specific match fields, as well as having a more modest/manageable number of publications. While machine learning is considered authoritative by many, we do not see it as practical or replicable. The procedure advanced herein is both practical, replicable and relatively user friendly. It might be categorized into a space between ORCID and machine learning. Machine learning approaches typically look for commonalities among citation data, which is not always available, structured or easy to work with. The procedure we advance is intended to be applied across numerous fields in a dataset of interest (e.g. emails, coauthors, affiliations, etc.), resulting in multiple rounds of reduction. Results indicate that effective match fields include author identifiers, emails, source titles, co-authors and ISSNs. While the script we present is not likely to result in a dataset consisting solely of true positives (at least for more common surnames), it does significantly reduce manual effort on the user’s part. Dataset reduction (after our procedure is applied) is in large part a function of (a) field availability and (b) field coverage.« less