skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 28, 2026

Title: A Constraint on the Density of Jupiter’s Moon Thebe from Primordial Dynamics
Abstract Of the 97 known satellites in the Jovian system, the individual masses and densities of each moon have only been determined for six of them: the four Galileans, Amalthea, and Himalia. In this Letter, we derive a prediction for the mean density (and mass) of Thebe, Jupiter’s sixth-largest regular moon, obtaining a lower limit ofρT≳ 1.0 g cm–3(mT≳ 5 × 1020g). In particular, this value emerges as a key constraint within the context of the resonant transport model for the origins of Jupiter’s interior satellites. Expanding on this theory, here we carry out simulations of the simultaneous gravitational shepherding of Amalthea and Thebe via the resonant influence of inward-migrating Io during Jupiter’s disk-bearing epoch. We find that owing to overstability of resonant dynamics facilitated by the circumjovian disk’s aerodynamic drag, Thebe’s smaller radius (compared to that of Amalthea) requires a higher density to ensure its terminal orbital distance exceeds that of Amalthea, as it does today. With multiple current and upcoming space missions devoted to in situ exploration of the Jovian system, a proper measurement of Thebe’s mass provides an avenue toward empirical falsification or confirmation of our theoretical model for the dynamical evolution of Jupiter’s inner moons.  more » « less
Award ID(s):
2408867
PAR ID:
10634580
Author(s) / Creator(s):
;
Publisher / Repository:
AAS Journals
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
990
Issue:
1
ISSN:
2041-8205
Page Range / eLocation ID:
L11
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We analyze the first cosmological baryonic zoom-in simulations of galaxies in dissipative self-interacting dark matter (dSIDM). The simulations utilize the FIRE-2 galaxy formation physics with the inclusion of dissipative dark matter self-interactions modeled as a constant fractional energy dissipation (fdiss= 0.75). In this paper, we examine the properties of dwarf galaxies withM*∼ 105–109Min both isolation and within Milky Way–mass hosts. For isolated dwarfs, we find more compact galaxy sizes and promotion of disk formation in dSIDM with (σ/m) ≤ 1 cm2g−1. On the contrary, models with (σ/m) = 10 cm2g−1produce puffier stellar distributions that are in tension with the observed size–mass relation. In addition, owing to the steeper central density profiles, the subkiloparsec circular velocities of isolated dwarfs when (σ/m) ≥ 0.1 cm2g−1are enhanced by about a factor of 2, which are still consistent with the kinematic measurements of Local Group dwarfs but in tension with the Hirotation curves of more massive field dwarfs. Meanwhile, for satellites of Milky Way–mass hosts, the median circular velocity profiles are marginally affected by dSIDM physics, but dSIDM may help promote the structural diversity of dwarf satellites. The number of satellites is slightly enhanced in dSIDM, but the differences are small compared with the large host-to-host variations. In conclusion, the dSIDM models with (σ/m) ≳ 0.1 cm2g−1,fdiss= 0.75 are in tension in massive dwarfs (Mhalo∼ 1011M) due to circular velocity constraints. However, models with lower effective cross sections (at this halo mass/velocity scale) are still viable and can produce nontrivial observable signatures. 
    more » « less
  2. Abstract The detection of satellites around extrasolar planets, so called exomoons, remains a largely unexplored territory. In this work, we study the potential of detecting these elusive objects from radial velocity monitoring of self-luminous, directly imaged planets. This technique is now possible thanks to the development of dedicated instruments combining the power of high-resolution spectroscopy and high-contrast imaging. First, we demonstrate a sensitivity to satellites with a mass ratio of 1%–4% at separations similar to the Galilean moons from observations of a brown-dwarf companion (HR 7672 B;Kmag= 13; 0.″7 separation) with the Keck Planet Imager and Characterizer (R∼ 35,000 in theKband) at the W. M. Keck Observatory. Current instrumentation is therefore already sensitive to large unresolved satellites that could be forming from gravitational instability akin to binary star formation. Using end-to-end simulations, we then estimate that future instruments such as the Multi-Object Diffraction-limited High-resolution Infrared Spectrograph, planned for the Thirty Meter Telescope, should be sensitive to satellites with mass ratios of ∼10−4. Such small moons would likely form in a circumplanetary disk similar to the Jovian satellites in the solar system. Looking for the Rossiter–McLaughlin effect could also be an interesting pathway to detecting the smallest moons on short orbital periods. Future exomoon discoveries will allow precise mass measurements of the substellar companions that they orbit and provide key insight into the formation of exoplanets. They would also help constrain the population of habitable Earth-sized moons orbiting gas giants in the habitable zone of their stars. 
    more » « less
  3. Abstract To better understand the formation of large, low-surface-brightness galaxies, we measure the correlation function between ultradiffuse galaxy (UDG) candidates and Milky Way analogs (MWAs). We find that: (1) the projected radial distribution of UDG satellites (projected surface density ∝r−0.84±0.06) is consistent with that of normal satellite galaxies; (2) the number of UDG satellites per MWA (SUDG) is ∼0.5 ± 0.1 over projected radii from 20 to 250 kpc and −17 <Mr< −13.5; (3)SUDGis consistent with a linear extrapolation of the relationship between the number of UDGs per halo versus halo mass obtained over galaxy group and cluster scales; (4) red UDG satellites dominate the population of UDG satellites (∼80%); (5) over the range of satellite magnitudes studied, UDG satellites comprise ∼10% of the satellite galaxy population of MWAs; and (6) a significant fraction of these (∼13%) have estimated total masses >1010.9Mor, equivalently, at least half the halo mass of the LMC, and populate a large fraction (∼18%) of the expected subhalos down to these masses. All of these results suggest a close association between the overall low-mass galaxy population and UDGs, which we interpret as favoring models where UDG formation principally occurs within the general context of low-mass galaxy formation over models invoking more exotic physical processes specifically invoked to form UDGs. 
    more » « less
  4. Abstract Understanding the chemical enrichment of different elements is crucial to gaining a complete picture of galaxy chemical evolution. In this study, we present a new sample of 46 low-redshift, low-mass star-forming galaxies atM*∼ 108−10Malong with two quiescent galaxies atM*∼ 108.8Mobserved with the Keck Cosmic Web Imager, aiming to investigate the chemical evolution of galaxies in the transition zone between Local Group satellites and massive field galaxies. We develop a novel method to simultaneously determine stellar abundances of iron and magnesium in star-forming galaxies. With the gas-phase oxygen abundance (O/H)gmeasured using the strong-line method, we are able to make the first-ever apples-to-apples comparison ofαelements in the stars and the interstellar medium. We find that the [Mg/H]*–[O/H]grelation is much tighter than the [Fe/H]*–[O/H]grelation, which can be explained by the similar production processes ofαelements. Most galaxies in our sample exhibit higher [O/H]gthan [Fe/H]*and [Mg/H]*. In addition, we construct mass–metallicity relations (MZRs) measured as three different elements (Fe*, Mg*, Og). Compared to the gas O-MZR, the stellar Fe- and Mg-MZRs show larger scatter driven by variations in specific star formation rates (sSFR), with star-forming galaxies exhibiting higher sSFR and lower stellar abundances at fixed mass. The excess of [O/H]gcompared to stellar abundances as well as the anticorrelation between sSFR and stellar abundance suggests that galaxy quenching of intermediate-mass galaxies atM*∼ 108−10Mis primarily driven by starvation. 
    more » « less
  5. Jupiter's icy moon Europa is currently seen as the most habitable world closest to Earth. Data from the space mission Galileo supported the presence of a global subsurface water ocean in direct contact with a rocky mantle, implying possible rock-water processes similar to those occurring on Earth's ocean floor, which is teeming with life. Although Juno can provide occasional glimpses of the Galilean satellites, close-up observations are not expected until the arrival of Europa Clipper and JUICE in the Jovian system. In the meantime, radar astronomy can help expand our understanding of this intriguing ocean world.There are ongoing efforts to determine Europa's obliquity from radar echoes observed with the Goldstone Solar System Radar and the Green Bank Telescope [1]. In this contribution, we will present our latest models for icy moon obliquity and nutations, and demonstrate the need for precise modelling of elastic deformation in the ice shell. We will also investigate possible resonant amplification of the obliquity due to ocean dynamics.This work is financially supported by the Belgian Science Policy Office (BELSPO) through the BRAIN.be-2.0 programme.[1] Margot J.-L., Spin states of Europa and Ganymede, European Geosciences Union General Assembly 2025 
    more » « less