skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 5, 2026

Title: Introducing the Condor Array Telescope. VI. Discovery of Extensive Ionized Gaseous Filaments of the Cosmic Web in the Direction of the M81 Group
Abstract We used the Condor Array Telescope to obtain deep imaging observations through luminance broadband and Heii, [Oiii], Hei, Hα, [Nii], and [Sii] narrowband filters of an extended region of the M81 Group spanning ≈8 × 8 deg2on the sky centered near M81 and M82. Here, we report aspects of these observations that are specifically related to (1) a remarkable filament known as the “Ursa Major Arc” that stretches ≈30° across the sky roughly in the direction of Ursa Major, (2) a “giant shell of ionized gas” that stretches ≈0.8 deg across the sky located ≈0.6 deg northwest of M82, and (3) a remarkable network of ionized gaseous filaments revealed by the new Condor observations that appear to connect the arc, the shell, and various galaxies of the M81 Group and, by extension, the group itself. We measure flux ratios between the various ions to help to distinguish photoionized from shock-ionized gas, and we find that the flux ratios of the arc and shell are not indicative of shock ionization. This provides strong evidence against a previous interpretation of the arc as an interstellar shock produced by an unrecognized supernova. We suggest that all of these objects, including the arc, are associated with the M81 Group and are located at roughly the distance (≈3.6 Mpc) of M81, that the arc is an intergalactic filament, and that the objects are associated with the low-redshift cosmic web.  more » « less
Award ID(s):
2407763
PAR ID:
10634634
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Astrophysical Journal
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
981
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
152
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We used the Condor Array Telescope to obtain deep imaging observations through the luminance broadband and Heii468.6 nm, [Oiii] 500.7 nm, Hei587.5 nm, Hα, [Nii] 658.4 nm, and [Sii] 671.6 nm narrowband filters of an extended region comprising 13 “Condor fields” spanning ≈ 8 × 8 deg2on the sky centered near M81 and M82. Here we describe the acquisition and processing of these observations, which together constitute unique very deep imaging observations of a large portion of the M81 Group through a complement of broad- and narrowband filters. The images are characterized by an intricate web of faint, diffuse, continuum produced by starlight scattered from Galactic cirrus, and all prominent cirrus features identified in the broadband image can also be identified in the narrowband images. We subtracted the luminance image from the narrowband images to leave, more or less, only line emission in the difference images, and we masked regions of the resulting images around stars at an isophotal limit. The difference images exhibit extensive extended structures of ionized gas in the direction of the M81 Group, from known galaxies of the M81 Group, clouds of gas, filamentary structures, and apparent or possible bubbles or shells. Specifically, the difference images show a remarkable filament known as the “Ursa Major Arc;” a remarkable network of criss-crossed filaments between M81 and NGC 2976, some of which intersect and overlap the Ursa Major Arc; and details of a “giant shell of ionized gas.” 
    more » « less
  2. Abstract The “Condor Array Telescope” or “Condor” is a high-performance “array telescope” comprised of six apochromatic refracting telescopes of objective diameter 180 mm, each equipped with a large-format, very low-read-noise (≈1.2 e − ), very rapid-read-time (<1 s) CMOS camera. Condor is located at a very dark astronomical site in the southwest corner of New Mexico, at the Dark Sky New Mexico observatory near Animas, roughly midway between (and more than 150 km from either) Tucson and El Paso. Condor enjoys a wide field of view (2.29 × 1.53 deg 2 or 3.50 deg 2 ), is optimized for measuring both point sources and extended, very low-surface-brightness features, and for broad-band images can operate at a cadence of 60 s (or even less) while remaining sky-noise limited with a duty cycle near 100%. In its normal mode of operation, Condor obtains broad-band exposures of exposure time 60 s over dwell times spanning dozens or hundreds of hours. In this way, Condor builds up deep, sensitive images while simultaneously monitoring tens or hundreds of thousands of point sources per field at a cadence of 60 s. Condor is also equipped with diffraction gratings and with a set of He ii 468.6 nm, [O iii ] 500.7 nm, He i 587.5 nm, H α 656.3 nm, [N ii ] 658.4 nm, and [S ii ] 671.6 nm narrow-band filters, allowing it to address a variety of broad- and narrow-band science issues. Given its unique capabilities, Condor can access regions of “astronomical discovery space” that have never before been studied. Here we introduce Condor and describe various aspects of its performance. 
    more » « less
  3. Abstract M82 is an archetypal starburst galaxy in the local Universe. The central burst of star formation, thought to be triggered by M82's interaction with other members in the M81 group, is driving a multiphase galaxy-scale wind away from the plane of the disk that has been studied across the electromagnetic spectrum. Here, we present new velocity-resolved observations of the [Cii] 158μm line in the central disk and the southern outflow of M82 using the upGREAT instrument on board SOFIA. We also report the first detections of velocity-resolved (ΔV= 10 km s−1) [Cii] emission in the outflow of M82 at projected distances of ≈1–2 kpc south of the galaxy center. We compare the [Cii] line profiles to observations of CO and Hiand find that likely the majority (>55%) of the [Cii] emission in the outflow is associated with the neutral atomic medium. We find that the fraction of [Cii] actually outflowing from M82 is small compared to the bulk gas outside the midplane (which may be in a halo or tidal streamers), which has important implications for observations of [Cii] outflows at higher redshift. Finally, by comparing the observed ratio of the [Cii] and CO intensities to models of photodissociation regions, we estimate that the far-ultraviolet (FUV) radiation field in the disk is ∼103.5G0, in agreement with previous estimates. In the outflow, however, the FUV radiation field is 2–3 orders of magnitudes lower, which may explain the high fraction of [Cii] arising from the neutral medium in the wind. 
    more » « less
  4. Abstract We present the discovery of a giant cloud of ionized gas in the field of the starbursting galaxy M82. Emission from the cloud is seen in H α and [N ii ] λ 6583 in data obtained though a small pathfinder instrument used to test the key ideas that will be implemented in the Dragonfly Spectral Line Mapper, an upcoming ultranarrow-bandpass imaging version of the Dragonfly Telephoto Array. The discovered cloud has a shell-like morphology with a linear extent of 0.°8 and is positioned 0.°6 northwest of M82. At the heliocentric distance of the M81 group, the cloud’s longest angular extent corresponds to 55 kpc and its projected distance from the nucleus of M82 is 40 kpc. The cloud has an average H α surface brightness of 2 × 10 −18 erg cm − 2 s − 1 arcsec − 2 . The [N ii ] λ 6583/H α line ratio varies from [N ii ]/H α ∼ 0.2 to [N ii ]/H α ∼ 1.0 across the cloud, with higher values found in its eastern end. Follow-up spectra obtained with Keck LRIS confirm the existence of the cloud and yield line ratios of [N ii ] λ 6583/H α = 0.340 ± 0.003 and [S ii ] λλ 6716, 6731/H α = 0.64 ± 0.03 in the cloud. This giant cloud of material could be lifted from M82 by tidal interactions or by its powerful starburst. Alternatively, it may be gas infalling from the cosmic web, potentially precipitated by the superwinds of M82. Deeper data are needed to test these ideas further. The upcoming Dragonfly Spectral Line Mapper will have 120 lenses, 40× more than in the pathfinder instrument used to obtain the data presented here. 
    more » « less
  5. Abstract Mergers of and interactions between galaxies imprint a wide diversity of morphological, dynamical, and chemical characteristics in stellar halos and tidal streams. Measuring these characteristics elucidates aspects of the progenitors of the galaxies we observe today. The M81 group is the perfect galaxy group to understand the past, present, and future of a group of galaxies in the process of merging. Here, we measure the end of star formation (t90) and metallicity ([M/H]) of the stellar halo of M82 and the eastern tidal stream of NGC 3077 to: (1) test the idea that M82 possesses a genuine stellar halo, formed before any interaction with M81; (2) determine if NGC 3077's tidal disruption is related to the star formation history in its tails; and (3) create a timeline of the assembly history of the central trio in the M81 group. We argue that M82 possesses a genuine, metal-poor ([M/H] ∼ −1.62 dex) stellar halo, formed from the merger of a small satellite galaxy roughly 6.6 Gyr ago. We also find that the stars present in NGC 3077's tails formed before tidal disruption with M81, and possess a roughly uniform metallicity as shown in S. Okamoto et al., implying that NGC 3077's progenitor had significant population gradients. Finally, we present a timeline of the central trio’s merger/interaction history. 
    more » « less