skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1946700

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT The topographic growth of the Eastern Cordillera in the northern Andes of Colombia is a critical event in the tectonic and paleogeographic evolution of the western Amazon Basin. Documentation of early orogenic growth is enabled through multi‐proxy provenance signatures recorded in the adjacent retro‐foreland basin. In broken foreland basins, basement highs interrupt the lateral continuity of facies belts and potentially mask provenance signals. The Putumayo Basin is a broken foreland basin in western Amazonia at ~1°–3° N, where the Florencia, Macarena, and El Melón‐Vaupes basement highs have compartmentalised discrete depocentres during basin development. This study presents new evidence from stratigraphic, conglomerate clast count, sandstone petrography, detrital zircon U–Pb geochronology and novel apatite detrital U–Pb age trace element geochemistry analyses. The results show that the southern Eastern Cordillera (i.e., Garzon Massif) and Putumayo Basin basement highs were initially uplifted during the Late Cretaceous coeval with the Central Cordillera, most likely associated with the collision of the Caribbean Large Igneous Province (CLIP). Distinctive facies distributions and provenance changes characterise the Putumayo Basin over a ~300 km distance from south to north, in the Rumiyaco Formation and Neme Sandstone. Detrital zircon U–Pb ages record a sharp reversal from easterly derived Proterozoic to westerly sourced late Mesozoic–Cenozoic Andean zircons derived principally from the Central Cordillera. Provenance signatures of the synorogenic Eocene Pepino Formation demonstrate the continued exhumation of the Eastern Cordillera as a second‐order source area. However, the emergence of the northern intraplate highs modulated the provenance signature due to the rapid unroofing of relatively thinner marine sedimentary cover strata that overlie the Putumayo basement, in comparison to the thicker sequences of the southern basin. The provenance data and facies distributions of the Oligocene–Miocene Orito Group were more heterogeneous due to strike‐slip deformation, associated with major plate tectonic reorganisation as the Nazca Plate subducted under the South American margin. 
    more » « less
  2. Abstract The northern Andes of southern Colombia contain a rich geologic history recorded by Proterozoic to Cenozoic metamorphic, igneous, and sedimentary rocks. The region plays a pivotal role in understanding the evolution of topography in northwestern South America and the development of large river systems, such as the Amazon, Orinoco, and Magdalena rivers. However, understanding of the basement framework has been hindered by challenging access, security concerns, tropical climate, and outcrop scarcity. Further, an insufficient geochronologic characterization of Andean basement complicates provenance interpretations of adjacent basins and restricts understanding of the paleogeographic evolution of southern Colombia. To address these issues, this paper presents a zircon U-Pb geochronological dataset derived for 24 bedrock samples and 19 modern river samples. The zircon U-Pb results reveal that the Eastern Cordillera of southern Colombia is underlain by basement rocks that originated in various tectonic events since ca. 1.5 Ga, including the accretion of discrete terranes. The oldest rocks, found in the Garzon Massif, are high-grade metamorphic rocks with contrasting Proterozoic protolith crystallization ages. Whereas the SW part of the massif formed during the Putumayo Orogeny (ca. 1.2–0.9 Ga), we report orthogneisses for the NE segment with protoliths formed at ca. 1.5 Ga, representing the NW continuation of the Rio Negro Jurena province of the Amazonian Craton. In contrast, crystalline rocks of the Central Cordillera primarily consist of Permian–Triassic (ca. 270–250 Ma) and Jurassic–Cretaceous (ca. 180–130 Ma) igneous rocks formed in a magmatic arc. In southernmost Colombia, the Putumayo Mountains mainly consist of Jurassic–Cretaceous (180–130 Ma) plutonic and volcanic rocks. Furthermore, we analyzed the heavy mineral abundances in modern river sands in southern Colombia (spanning 1°N–5°N) and found that key minerals such as garnet and epidote can be utilized to trace high-grade metamorphic and igneous lithologies, respectively, in the river catchments. The differentiation of basement ages for separate tectonic provinces, combined with heavy mineral abundances in modern sands, can serve as unique fingerprints in provenance analyses to trace the topographic and exhumational evolution of different Andean regions through time. 
    more » « less
  3. Free, publicly-accessible full text available May 1, 2026
  4. Abstract Convergent plate boundaries show sharp variations in orogenic width and extent of intraplate deformation. Analysis of late Cenozoic contractile deformation along the Andean mountain front and adjacent foreland highlights the contrasting degrees of deformation advance toward the plate interior. The retroarc positions of the Andean topographic front (marked by frontal thrust-belt structures) and foreland deformation front (defined by isolated basement block uplifts) range from 300 to 900 km inboard of the trench axis. Over the ~8000 km arcuate length of the Andes (10°N to 55°S), four discrete maxima of inboard deformation advance are spatially co-located with the Peruvian (5°S–14°S) and Pampean (27°S–33°S) zones of flat slab subduction, the subducted Chile Ridge (45°S–48°S), and the anomalously thick Paleozoic stratigraphic wedge of Bolivia (17°S –23°S). The spatial correspondence of retroarc shortening with specific geodynamic configurations demonstrates the mechanical role of flat slab subduction, slab window development, and combined structural and stratigraphic geometries in shaping the orogenic architecture of Cordilleran margins, largely through lithospheric strengthening, weakening, and/or tectonic inheritance. 
    more » « less
  5. Unconformities in foreland basins may be generated by tectonic processes that operate in the basin, the adjacent fold–thrust belt or the broader convergent margin. Foreland basin unconformities represent shifts from high accommodation to non-depositional or erosional conditions in which the interruption of subsidence precludes the net accumulation of sediment. This study explores the genesis of long-duration unconformities (>1–20 myr) and condensed stratigraphic sections by considering modern and ancient examples from the Andes of western South America. These case studies highlight the potential geodynamic mechanisms of accommodation reduction and hiatus development in Andean-type retroarc foreland settings, including: (1) shortening-induced uplift in the frontal thrust belt and proximal foreland; (2) the growth and advance of a broad, low-relief flexural forebulge; (3) the uplift of intraforeland basement blocks; (4) tectonic quiescence with regional isostatic rebound; (5) the end of thrust loading and flexural subsidence during oblique convergence; (6) diminished accommodation or sediment supply due to changes in sea-level, climate, erosion or transport; (7) basinwide uplift during flat-slab subduction; and (8) dynamic uplift associated with slab window formation, slab break-off, elevated intraplate (in-plane) stress, or related mantle process. These contrasting mechanisms can be distinguished on the basis of the spatial distribution, structural context, stratigraphic position, palaeoenvironmental conditions, and duration of unconformities and condensed sections. Thematic collection: This article is part of the Fold-and-thrust belts collection available at: https://www.lyellcollection.org/cc/fold-and-thrust-belts 
    more » « less