Credibility building activities in computational research include verification and validation, reproducibility and replication, and uncertainty quantification. Though orthogonal to each other, they are related. This paper presents validation and replication studies in electromagnetic excitations on nanoscale structures, where the quantity of interest is the wavelength at which resonance peaks occur. The study uses the open-source software PyGBe : a boundary element solver with treecode acceleration and GPU capability. We replicate a result by Rockstuhl et al. (2005, doi:10/dsxw9d) with a two-dimensional boundary element method on silicon carbide (SiC) particles, despite differences in our method. The second replication case from Ellis et al. (2016, doi:10/f83zcb) looks at aspect ratio effects on high-order modes of localized surface phonon-polariton nanostructures. The results partially replicate: the wavenumber position of some modes match, but for other modes they differ. With virtually no information about the original simulations, explaining the discrepancies is not possible. A comparison with experiments that measured polarized reflectance of SiC nano pillars provides a validation case. The wavenumber of the dominant mode and two more do match, but differences remain in other minor modes. Results in this paper were produced with strict reproducibility practices, and we share reproducibility packages for all, including input files, execution scripts, secondary data, post-processing code and plotting scripts, and the figures (deposited in Zenodo). In view of the many challenges faced, we propose that reproducible practices make replication and validation more feasible. This article is part of the theme issue ‘Reliability and reproducibility in computational science: implementing verification, validation and uncertainty quantification in silico ’.
more »
« less
This content will become publicly available on July 31, 2026
Code Review, Reproducibility, and Improving the Scholarly Record
An ongoing theme in this Reinforcing Reproducibility and Replicability column is the verification of reproducibility packages by institutions, see Butler (2023), Peer (2024), Pérignon (2024), and Jones (2024) for examples. In this present piece, Limor Peer and her co-author, Nicholas Ottone, build on their experience at the Institution for Social and Policy Studies at Yale University to not just provide guidance to authors (a sine-qua-non of any such recommendation), but also for those who will provide constructive comments, including post-publication updates, on efforts to reproduce replication packages. Ottone and Peer’s short piece describes the idea of a “curator note,” which can be added to already published replication packages at, well, “curated” deposits to enhance the future reproducibility for others. It is worth pointing out that many archives provide the ability for authors themselves to provide such notes, see for instance the American Economic Association’s Policy on Revisions of Data and Code Deposits. Students, researchers, and authors themselves should read Ottone’s and Peer’s recommendations.
more »
« less
- Award ID(s):
- 2217493
- PAR ID:
- 10634642
- Editor(s):
- Vilhuber, Lars
- Publisher / Repository:
- Harvard Data Science Review
- Date Published:
- Journal Name:
- Harvard Data Science Review
- Volume:
- 7
- Issue:
- 3
- ISSN:
- 2644-2353
- Subject(s) / Keyword(s):
- reproducibility, verification, code review, open scholarship
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The ability to repeat research is vital in confirming the validity of scientific discovery and is relevant to ubiquitous sensor research. Investigation of novel sensors and sensing mechanisms intersect several Federal and non-Federal agencies. Despite numerous studies on sensors at different stages of development, the absence of new field-ready or commercial sensors seems limited by reproducibility. Current research practices in sensors needs sustainable transformations. The scientific community seeks ways to incorporate reproducibility and repeatability to validate published results. A case study on the reproducibility of low-cost air quality sensors is presented. In this context, the article discusses (a) open source data management frameworks in alignment with findability, accessibility, interoperability, and reuse (FAIR) principles to facilitate sensor reproducibility; (b) suggestions for journals focused on sensors to incorporate a reproducibility editorial board and incentivization for data sharing; (c) practice of reproducibility by targeted focus issues; and (d) education of current and the next generation of diverse student and faculty community on FAIR principles. The existence of different types of sensors such as physical, chemical, biological, and magnetic (to name a few) and the fact that the sensing field spans multiple disciplines (electrical engineering, mechanical engineering, physics, chemistry, and electrochemistry) call for a generic model for reproducibility. Considering the available metrics, the authors propose eight FAIR metric standards to that transcend disciplines: citation standards, design and analysis transparency, data transparency, analytical methods transparency, research materials transparency, hardware transparency, preregistration of studies, and replication.more » « less
-
The concern that Artificial Intelligence (AI) and Machine Learning (ML) are entering a reproducibility crisis has spurred significant research in the past few years. Yet with each paper, it is often unclear what someone means by reproducibility. Our work attempts to clarify the scope of reproducibility as displayed by the community at large. In doing so, we propose to refine the research to eight general topic areas. In this light, we see that each of these areas contains many works that do not advertise themselves as being about reproducibility, in part because they go back decades before the matter came to broader attention.more » « less
-
Practicing reproducible scientific research requires access to appropriate reproducibility methodology and software, as well as open data. Strict reproducibility in complex scientific domains such as environmental science, ecology and medicine, however, is difficult if not impossible. Here, we consider replication as a relaxed but bona fide substitution for strict reproducibility and propose using 3D terrain visualization for replication in environmental science studies that propose causal relationships between one or more driver variables and one or more response variables across complex ecosystem landscapes. We base our contention of the usefulness of visualization for replication on more than ten years observing environmental science modelers who use our 3D terrain visualization software to develop, calibrate, validate, and integrate predictive models. To establish the link between replication and model validation and corroboration, we consider replication as proposed by Munafò, i.e., triangulation. We enumerate features of visualization systems that would enable such triangulation and argue that such systems would render feasible domain-specific, open visualization software for use in replicating environmental science studies.more » « less
-
Background: Text recycling (hereafter TR)—the reuse of one’s own textual materials from one document in a new document—is a common but hotly debated and unsettled practice in many academic disciplines, especially in the context of peer-reviewed journal articles. Although several analytic systems have been used to determine replication of text—for example, for purposes of identifying plagiarism—they do not offer an optimal way to compare documents to determine the nature and extent of TR in order to study and theorize this as a practice in different disciplines. In this article, we first describe TR as a common phenomenon in academic publishing, then explore the challenges associated with trying to study the nature and extent of TR within STEM disciplines. We then describe in detail the complex processes we used to create a system for identifying TR across large corpora of texts, and the sentence-level string-distance lexical methods used to refine and test the system (White & Joy, 2004). The purpose of creating such a system is to identify legitimate cases of TR across large corpora of academic texts in different fields of study, allowing meaningful cross-disciplinary comparisons in future analyses of published work. The findings from such investigations will extend and refine our understanding of discourse practices in academic and scientific settings. Literature Review: Text-analytic methods have been widely developed and implemented to identify reused textual materials for detecting plagiarism, and there is considerable literature on such methods. (Instead of taking up space detailing this literature, we point readers to several recent reviews: Gupta, 2016; Hiremath & Otari, 2014; and Meuschke & Gipp, 2013). Such methods include fingerprinting, term occurrence analysis, citation analysis (identifying similarity in references and citations), and stylometry (statistically comparing authors’ writing styles; see Meuschke & Gipp, 2013). Although TR occurs in a wide range of situations, recent debate has focused on recycling from one published research paper to another—particularly in STEM fields (see, for example, Andreescu, 2013; Bouville, 2008; Bretag & Mahmud, 2009; Roig, 2008; Scanlon, 2007). An important step in better understanding the practice is seeing how authors actually recycle material in their published work. Standard methods for detecting plagiarism are not directly suitable for this task, as the objective is not to determine the presence or absence of reuse itself, but to study the types and patterns of reuse, including materials that are syntactically but not substantively distinct—such as “patchwriting” (Howard, 1999). In the present account of our efforts to create a text-analytic system for determining TR, we take a conventional alphabetic approach to text, in part because we did not aim at this stage of our project to analyze non-discursive text such as images or other media. However, although the project adheres to conventional definitions of text, with a focus on lexical replication, we also subscribe to context-sensitive approaches to text production. The results of applying the system to large corpora of published texts can potentially reveal varieties in the practice of TR as a function of different discourse communities and disciplines. Writers’ decisions within what appear to be canonical genres are contingent, based on adherence to or deviation from existing rules and procedures if and when these actually exist. Our goal is to create a system for analyzing TR in groups of texts produced by the same authors in order to determine the nature and extent of TR, especially across disciplinary areas, without judgment of scholars’ use of the practice.more » « less
An official website of the United States government
