Abstract Recent studies have uncovered remarkable diversity inDictyonemas.lat. basidiolichens, here recognized as subtribe Dictyonemateae. This group includes five genera and 148 species, but hundreds more await description. The photobionts of these lichens belong toRhizonema, a recently resurrected cyanobacterial genus known by a single species. To further investigate photobiont diversity within Dictyonemateae, we generated 765 new cyanobacterial sequences from 635 specimens collected from 18 countries. The ITS barcoding locus supported the recognition of 200 mycobiont (fungal) species among these samples, but the photobiont diversity was comparatively low. Our analyses revealed three main divisions ofRhizonema, with two repeatedly recovered as monophyletic (proposed as new species), and the third mostly paraphyletic. The paraphyletic lineage corresponds toR. interruptumand partnered with mycobionts from all five genera in Dictyonemateae. There was no evidence of photobiont‐mycobiont co‐speciation, but one of the monophyletic lineages ofRhizonemaappears to partner predominantly with one of the two major clades ofCora(mycobiont) with samples collected largely from the northern Andes. Molecular clock estimations indicate theRhizonemaspecies are much older than the fungal species in the Dictyonemateae, suggesting that these basidiolichens obtained their photobionts from older ascolichen lineages and the photobiont variation in extant lineages of Dictyonemateae is the result of multiple photobiont switches. These results support the hypothesis of lichens representing fungal farmers, in which diverse mycobiont lineages associate with a substantially lower diversity of photobionts by sharing those photobionts best suited for the lichen symbiosis among multiple and often unrelated mycobiont lineages. 
                        more » 
                        « less   
                    This content will become publicly available on December 1, 2025
                            
                            Eco‐phylogenetic study of Trebouxia in southern Africa reveals interbiome connectivity and potential endemism in a green algal lichen photobiont
                        
                    
    
            Abstract PremiseSouthern Africa is a biodiversity hotspot rich in endemic plants and lichen‐forming fungi. However, species‐level data about lichen photobionts in this region are minimal. We focused onTrebouxia(Chlorophyta), the most common lichen photobiont, to understand how southern African species fit into the global biodiversity of this genus and are distributed across biomes and mycobiont partners. MethodsWe sequencedTrebouxianuclear ribosomal ITS andrbcLof 139 lichen thalli from diverse biomes in South Africa and Namibia. GlobalTrebouxiaphylogenies incorporating these new data were inferred with a maximum likelihood approach.Trebouxiabiodiversity, biogeography, and mycobiont–photobiont associations were assessed in phylogenetic and ecological network frameworks. ResultsAn estimated 43 putativeTrebouxiaspecies were found across the region, including seven potentially endemic species. Only five clades represent formally described species:T. arboricolas.l. (A13),T. cf.cretacea(A01),T. incrustata(A06),T. lynniae(A39), andT. maresiae(A46). Potential endemic species were not significantly associated with the Greater Cape Floristic Region or desert.Trebouxiaspecies occurred frequently across multiple biomes. Annual precipitation, but not precipitation seasonality, was significant in explaining variation inTrebouxiacommunities. Consistent with other studies of lichen photobionts, theTrebouxia–mycobiont network had an anti‐nested structure. ConclusionsDepending on the metric used, ca. 20–30% of globalTrebouxiabiodiversity occurs in southern Africa, including many species yet to be described. With a classification scheme forTrebouxianow well established, tree‐based approaches are preferable over “barcode gap” methods for delimiting new species. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1846376
- PAR ID:
- 10634695
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- American Journal of Botany
- Volume:
- 111
- Issue:
- 12
- ISSN:
- 0002-9122
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            ABSTRACT AimFerns are globally distributed, yet the number of studies examining the historical evolution of African taxa is relatively low. Investigation of the evolution of African fern diversity is critical in order to understand patterns and processes that have global relevance (e.g., the pantropical diversity disparity [PDD] pattern). This study aims to examine when and from where a globally distributed fern lineage arrived in sub‐Saharan Africa, to obtain a better understanding of potential processes contributing to patterns of diversity across the region. LocationGlobal, sub‐Saharan Africa. TaxonAsplenium(Aspleniaceae). MethodsWe analysed five loci from 537Aspleniumtaxa using a maximum likelihood (IQ‐Tree) phylogenetic framework. For age estimation, we performed penalised likelihood as implemented in treePL, and executed a Bayesian analysis using BEAST. Biogeographical analyses were carried out using BioGeoBEARS. ResultsMost dispersals into Africa occurred within the last ~55 myr, with the highest diversity of sub‐Saharan African taxa concentrated in two clades, each of which descended from an Asian ancestor. Additional dispersals to sub‐Saharan Africa can be found throughout the phylogeny. Lastly, potential cryptic species diversity exists withinAspleniumas evidenced by several polyphyletic taxa. Main ConclusionsWe recover multiple dispersals ofAspleniumto sub‐Saharan Africa, with two major lineages likely diversifying after arrival.more » « less
- 
            Abstract BackgroundUrbanization can influence disease vectors by altering larval habitat, microclimates, and host abundance. The global increase in urbanization, especially in Africa, is likely to alter vector abundance and pathogen transmission. We investigated the effect of urbanization and weather on the abundance of two mosquitoes,Aedes aegyptiandAedes albopictus, and infection with dengue, chikungunya, and Zika viruses at 63 sites in six cities spanning a 900-km latitudinal range in Cameroon, Central Africa. MethodsWe used human landing catches and backpack-mounted aspirators to sample mosquitoes and collected larval habitat, host availability, and weather (temperature, precipitation, humidity) data for each site in each city. We analyzed land use and land cover information and satellite photos at varying radii around sites (100 m to 2 km) to quantify the extent of urbanization and the number of structures around each site. We used a continuous urbanization index (UI; range 0–100) that increased with impermeable surface and decreased with forest cover. ResultsUrbanization increased larval habitat, human host availability, andAe. aegyptimosquito abundance.Aedes aegyptiabundance increased 1.7% (95% CI 0.69–2.7%) with each 1 unit increase in the urbanization index in all six cities (Douala, Kribi, Yaounde, Ngaoundere, Garoua, and Maroua) with a 5.4-fold increase from UI = 0 to UI = 100, and also increased with rainfall. In contrast,Ae. albopictusabundance increased with urbanization in one city, but showed no influence of urbanization in two other cites. Across three cities,Ae. albopictusabundance increased with rainfall, temperature, and humidity. Finally, we did not detect Zika, dengue, or chikungunya viruses in any specimens, and found weak evidence of interspecific competition in analyses of adult population growth rates. ConclusionsThese results show that urbanization consistently increasesAe. aegyptiabundance across a broad range of habitats in Central Africa, while effects onAe. albopictuswere more variable and the abundance of both species were influenced by rainfall. Future urbanization of Africa will likely increaseAe. aegyptiabundance, and climate change will likely alter abundance of both species through changes in precipitation and temperature. Graphical Abstractmore » « less
- 
            Abstract Acarospora socialis, the bright cobblestone lichen, is commonly found in southwestern North America. This charismatic yellow lichen is a species of key ecological significance as it is often a pioneer species in new environments. Despite their ecological importance virtually no research has been conducted on the genomics of A. socialis. To address this, we used long-read sequencing to generate the first high-quality draft genome of A. socialis. Lichen thallus tissue was collected from Pinkham Canyon in Joshua Tree National Park, California and deposited in the UC Riverside herbarium under accession #295874. The de novo assembly of the mycobiont partner of the lichen was generated from Pacific Biosciences HiFi long reads and Dovetail Omni-C chromatin capture data. After removing algal and bacterial contigs, the fungal genome was approximately 31.2 Mb consisting of 38 scaffolds with contig and scaffold N50 of 2.4 Mb. The BUSCO completeness score of the assembled genome was 97.5% using the Ascomycota gene set. Information on the genome of A. socialis is important for California conservation purposes given that this lichen is threatened in some places locally by wildfires due to climate change. This reference genome will be used for understanding the genetic diversity, population genomics, and comparative genomics of A. socialis species. Genomic resources for this species will support population and landscape genomics investigations, exploring the use of A. socialis as a bioindicator species for climate change, and in studies of adaptation by comparing populations that occur across aridity gradients in California.more » « less
- 
            Abstract Background and AimsQuantifying niche similarity among closely related species offers myriad insights into evolutionary history and ecology. In this study, our aim was to explore the interplay of geographical and niche space for rare, endemic plant species and to determine whether endemic habitats were environmentally similar or unique. MethodsWe characterized the niche of all Leavenworthia species, a genus of rare plants endemic to rocky glades in the eastern USA, using WorldClim data, surface geology, elevation and slope. We calculated the area of range overlap and estimated niche similarity between pairs of species in their total occupied niche space and the subset of niche space shared by both species. We used linear discriminant analyses to determine which niche dimensions differed the most between species. We used niche dimensions with consistently high discriminatory power to perform a random forest classification analysis and principal component analysis. Using a linear model, we related geographical distance to distance in niche space. Key ResultsMost species comparisons concluded that species niches had diverged, with niche similarity increasing linearly with range overlap. Temperature variation, precipitation amount and seasonality, and surface geology were the most divergent niche dimensions among all species comparisons. Geographical distance explained 42 % of the variation in niche space distance. Sites that were closer in niche space than expected were oriented east–west owing to the strong correlation between latitude and scores on the first principal component. ConclusionsDespite being endemic seemingly to very similar habitat, niche similarity is low among Leavenworthia species. Low niche similarity, combined with low geographical overlap, suggests that this lineage of rare plants potentially diversified in isolation but across a very small geographical area. The correlation between geographical space and niche space has received considerable attention, but our results suggest that geographical distance is a weak predictor of distance in niche space.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
