skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1846376

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Stewart, Frank J (Ed.)
    ABSTRACT We present six whole community shotgun metagenomic sequencing data sets of two types of biological soil crusts sampled at the ecotone of the Mojave Desert and Colorado Desert in California. These data will help us understand the diversity and function of biocrust microbial communities, which are essential for desert ecosystems. 
    more » « less
  2. Abstract Recent human activity has profoundly transformed Earth biomes on a scale and at rates that are unprecedented. Given the central role of symbioses in ecosystem processes, functions, and services throughout the Earth biosphere, the impacts of human-driven change on symbioses are critical to understand. Symbioses are not merely collections of organisms, but co-evolved partners that arise from the synergistic combination and action of different genetic programs. They function with varying degrees of permanence and selection as emergent units with substantial potential for combinatorial and evolutionary innovation in both structure and function. Following an articulation of operational definitions of symbiosis and related concepts and characteristics of the Anthropocene, we outline a basic typology of anthropogenic change (AC) and a conceptual framework for how AC might mechanistically impact symbioses with select case examples to highlight our perspective. We discuss surprising connections between symbiosis and the Anthropocene, suggesting ways in which new symbioses could arise due to AC, how symbioses could be agents of ecosystem change, and how symbioses, broadly defined, of humans and “farmed” organisms may have launched the Anthropocene. We conclude with reflections on the robustness of symbioses to AC and our perspective on the importance of symbioses as ecosystem keystones and the need to tackle anthropogenic challenges as wise and humble stewards embedded within the system. 
    more » « less
  3. ABSTRACT Sloths are unusual mobile ecosystems, containing a high diversity of epibionts living and growing in their fur as they climb slowly through the canopies of tropical forests. These epibionts include poorly studied algae, arthropods, fungi, and bacteria, making sloths likely reservoirs of unexplored biodiversity. This review aims to identify gaps and eliminate misconceptions in our knowledge of sloths and their epibionts, and to identify key questions to stimulate future research into the functions and roles of sloths within a broader ecological and evolutionary context. This review also seeks to position the sloth fur ecosystem as a model for addressing fundamental questions in metacommunity and movement ecology. The conceptual and evidence‐based foundation of this review aims to serve as a guide for future hypothesis‐driven research into sloths, their microbiota, sloth health and conservation, and the coevolution of symbioses in general. 
    more » « less
  4. Stewart, Frank J (Ed.)
  5. The public perception of viruses has historically been negative. We are now at a stage where the development of tools to study viruses is at an all-time high, but society’s perception of viruses is at an all-time low. The literature regarding viral interactions has been skewed towards negative (i.e., pathogenic) symbioses, whereas viral mutualisms remain relatively underexplored. Viral interactions with their hosts are complex and some non-pathogenic viruses could have potential benefits to society. However, viral research is seldom designed to identify viral mutualists, a gap that merits considering new experimental designs. Determining whether antagonisms, mutualisms, and commensalisms are equally common ecological strategies requires more balanced research efforts that characterize the full spectrum of viral interactions. 
    more » « less
  6. Abstract The measurement of uncharacterized pools of biological molecules through techniques such as metabarcoding, metagenomics, metatranscriptomics, metabolomics, and metaproteomics produces large, multivariate datasets. Analyses of these datasets have successfully been borrowed from community ecology to characterize the molecular diversity of samples ( ɑ -diversity) and to assess how these profiles change in response to experimental treatments or across gradients ( β -diversity). However, sample preparation and data collection methods generate biases and noise which confound molecular diversity estimates and require special attention. Here, we examine how technical biases and noise that are introduced into multivariate molecular data affect the estimation of the components of diversity (i.e., total number of different molecular species, or entities; total number of molecules; and the abundance distribution of molecular entities). We then explore under which conditions these biases affect the measurement of ɑ - and β -diversity and highlight how novel methods commonly used in community ecology can be adopted to improve the interpretation and integration of multivariate molecular data. 
    more » « less
  7. null (Ed.)
    Lichen associations, a classic model for successful and sustainable interactions between micro-organisms, have been studied for many years. However, there are significant gaps in our understanding about how the lichen symbiosis operates at the molecular level. This review addresses opportunities for expanding current knowledge on signalling and metabolic interplays in the lichen symbiosis using the tools and approaches of systems biology, particularly network modelling. The largely unexplored nature of symbiont recognition and metabolic interdependency in lichens could benefit from applying a holistic approach to understand underlying molecular mechanisms and processes. Together with ‘omics’ approaches, the application of signalling and metabolic network modelling could provide predictive means to gain insights into lichen signalling and metabolic pathways. First, we review the major signalling and recognition modalities in the lichen symbioses studied to date, and then describe how modelling signalling networks could enhance our understanding of symbiont recognition, particularly leveraging omics techniques. Next, we highlight the current state of knowledge on lichen metabolism. We also discuss metabolic network modelling as a tool to simulate flux distribution in lichen metabolic pathways and to analyse the co-dependence between symbionts. This is especially important given the growing number of lichen genomes now available and improved computational tools for reconstructing such models. We highlight the benefits and possible bottlenecks for implementing different types of network models as applied to the study of lichens. 
    more » « less