skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: PutnamBench: Evaluating Neural Theorem-Provers on the Putnam Mathematical Competition
We present PutnamBench, a new multi-language benchmark for evaluating the ability of neural theorem-provers to solve competition mathematics problems. PutnamBench consists of 1692 hand-constructed formalizations of 640 theorems sourced from the William Lowell Putnam Mathematical Competition, the premier undergraduate-level mathematics competition in North America. All the problems have formalizations in Lean 4 and Isabelle; a substantial subset also has Coq formalizations. PutnamBench requires significant problem-solving ability and proficiency in a broad range of topics taught in undergraduate mathematics courses. We use PutnamBench to evaluate several established neural and symbolic theorem-provers. These approaches can only solve a handful of the PutnamBench problems, establishing the benchmark as a difficult open challenge for research on neural theorem-proving. PutnamBench is available at https://github.com/trishullab/PutnamBench.  more » « less
Award ID(s):
2212559
PAR ID:
10634754
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Neural Information Processing Systems
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present PUTNAMBENCH, a new multilingual benchmark for evaluating the ability of neural theorem-provers to solve competition mathematics problems. PUTNAMBENCH consists of 1697 hand-constructed formalizations of 640 theorems sourced from the William Lowell Putnam Mathematical Competition, the premier undergraduate-level mathematics competition in North America. All the theorems have formalizations in Lean 4 and Isabelle; a substantial subset also has Coq formalizations. Proving the theorems requires significant problem-solving ability and proficiency in a broad range of topics taught in undergraduate mathematics courses. We use PUTNAMBENCH to evaluate several established neural and symbolic theorem-provers. These approaches can only solve a handful of the PUTNAMBENCH problems, establishing the benchmark as a difficult open challenge for research on neural theorem-proving. PUTNAMBENCH is available at https://github.com/trishullab/PutnamBench. 
    more » « less
  2. Interactive theorem provers are computer programs that check whether mathematical statements are correct. We show how the mathematics of theories in chemical physics can be written in the language of the Lean theorem prover, allowing chemical theory to be made even more rigorous and providing insight into the mathematics behind a theory. We use Lean to precisely define the assumptions and derivations of the Langmuir and BET theories of adsorption. We can also go further and create a network of definitions that build off of each other. This allows us to define a common basis for equations of motion or thermodynamics and derive many statements about them, like the kinematic equations of motion or gas laws such as Boyle's law. This approach could be extended beyond chemistry, and we propose the creation of a library of formally-proven theories in all fields of science. Furthermore, the rigorous logic of theorem provers complements the generative capabilities of AI models that generate code; we anticipate their integration to be valuable for automating the discovery of new scientific theories. 
    more » « less
  3. General mathematical reasoning is computationally undecidable, but humans routinely solve new problems. Moreover, discoveries developed over centuries are taught to subsequent generations quickly. What structure enables this, and how might that inform automated mathematical reasoning? We posit that central to both puzzles is the structure of procedural abstractions underlying mathematics. We explore this idea in a case study on 5 sections of beginning algebra on the Khan Academy platform. To define a computational foundation, we introduce Peano, a theorem-proving environment where the set of valid actions at any point is finite. We use Peano to formalize introductory algebra problems and axioms, obtaining well-defined search problems. We observe existing reinforcement learning methods for symbolic reasoning to be insufficient to solve harder problems. Adding the ability to induce reusable abstractions (""tactics"") from its own solutions allows an agent to make steady progress, solving all problems. Furthermore, these abstractions induce an order to the problems, seen at random during training. The recovered order has significant agreement with the expert-designed Khan Academy curriculum, and second-generation agents trained on the recovered curriculum learn significantly faster. These results illustrate the synergistic role of abstractions and curricula in the cultural transmission of mathematics. 
    more » « less
  4. This report presents the results of a friendly competition for formal verification of continuous and hybrid systems with artificial intelligence (AI) components. Specifically, machine learning (ML) components in cyber-physical systems (CPS), such as feedforward neural networks used as feedback controllers in closed-loop systems are considered, which is a class of systems classically known as intelligent control systems, or in more modern and specific terms, neural network control systems (NNCS). We more broadly refer to this category as AI and NNCS (AINNCS). The friendly competition took place as part of the workshop Applied Verification for Continuous and Hybrid Systems (ARCH) in 2020. In the second edition of this AINNCS category at ARCH-COMP, four tools have been applied to solve seven different benchmark problems, (in alphabetical order): NNV, OVERT, ReachNN*, and VenMAS. This report is a snapshot of the current landscape of tools and the types of benchmarks for which these tools are suited. Due to the diversity of problems, lack of a shared hardware platform, and the early stage of the competition, we are not ranking tools in terms of performance, yet the presented results probably provide the most complete assessment of current tools for safety verification of NNCS. 
    more » « less
  5. This report presents the results of a friendly competition for formal verification of continuous and hybrid systems with artificial intelligence (AI) components. Specifically, machine learning (ML) components in cyber-physical systems (CPS), such as feedforward neural networks used as feedback controllers in closed-loop systems are considered, which is a class of systems classically known as intelligent control systems, or in more modern and specific terms, neural network control systems (NNCS). We more broadly refer to this category as AI and NNCS (AINNCS). The friendly competition took place as part of the workshop Applied Verification for Continuous and Hybrid Systems (ARCH) in 2021. In the third edition of this AINNCS category at ARCH-COMP, three tools have been applied to solve seven different benchmark problems, (in alphabetical order): JuliaReach, NNV, and Verisig. JuliaReach is a new participant in this category, Verisig participated previously in 2019 and NNV has participated in all previous competitions. This report is a snapshot of the current landscape of tools and the types of benchmarks for which these tools are suited. Due to the diversity of problems, lack of a shared hardware platform, and the early stage of the competition, we are not ranking tools in terms of performance, yet the presented results combined with 2020 results probably provide the most complete assessment of current tools for safety verification of NNCS. 
    more » « less