skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2212559

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present PUTNAMBENCH, a new multilingual benchmark for evaluating the ability of neural theorem-provers to solve competition mathematics problems. PUTNAMBENCH consists of 1697 hand-constructed formalizations of 640 theorems sourced from the William Lowell Putnam Mathematical Competition, the premier undergraduate-level mathematics competition in North America. All the theorems have formalizations in Lean 4 and Isabelle; a substantial subset also has Coq formalizations. Proving the theorems requires significant problem-solving ability and proficiency in a broad range of topics taught in undergraduate mathematics courses. We use PUTNAMBENCH to evaluate several established neural and symbolic theorem-provers. These approaches can only solve a handful of the PUTNAMBENCH problems, establishing the benchmark as a difficult open challenge for research on neural theorem-proving. PUTNAMBENCH is available at https://github.com/trishullab/PutnamBench. 
    more » « less
    Free, publicly-accessible full text available December 7, 2025
  2. We present PutnamBench, a new multi-language benchmark for evaluating the ability of neural theorem-provers to solve competition mathematics problems. PutnamBench consists of 1692 hand-constructed formalizations of 640 theorems sourced from the William Lowell Putnam Mathematical Competition, the premier undergraduate-level mathematics competition in North America. All the problems have formalizations in Lean 4 and Isabelle; a substantial subset also has Coq formalizations. PutnamBench requires significant problem-solving ability and proficiency in a broad range of topics taught in undergraduate mathematics courses. We use PutnamBench to evaluate several established neural and symbolic theorem-provers. These approaches can only solve a handful of the PutnamBench problems, establishing the benchmark as a difficult open challenge for research on neural theorem-proving. PutnamBench is available at https://github.com/trishullab/PutnamBench. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. Large Language Models (LLMs) have a natural role in answering complex queries about data streams, but the high computational cost of LLM inference makes them infeasible in many such tasks. We propose online cascade learning as an approach to address this challenge. The objective here is to learn a “cascade” of models, starting with lower-capacity models (such as logistic regression) and ending with a powerful LLM, along with a deferral policy that determines the model to be used on a given input. We formulate the task of learning cascades online as an imitation-learning problem, where smaller models are updated over time imitating the LLM expert demonstrations, and give a no-regret algorithm for the problem. Experimental results across four benchmarks show that our method parallels LLMs in accuracy while cutting down inference costs by as much as 90% with strong robustness against input distribution shifts, underscoring its efficacy and adaptability in stream processing. 
    more » « less