skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 2, 2026

Title: Multiwavelength and Environmental Properties of Variability Selected Low-luminosity Active Galactic Nuclei
Abstract We present the multiwavelength and environmental properties of 37 variability-selected active galactic nuclei (AGNs), including 30 low-luminosity AGNs (LLAGNs), using a high cadence time-domain survey (All-Sky Automated Survey for SuperNovae) from a spectroscopic sample of 1218 nearby bright galaxies. We find that high-cadence time-domain surveys uniquely select LLAGNs that do not necessarily satisfy other AGN selection methods, such as X-ray, mid-IR, or BPT methods. In our sample, 3% of them pass the mid-infrared color based AGN selection, 18% pass the X-ray luminosity based AGN selection, and 60% pass the BPT selection. This result is supported by two other LLAGN samples from high-cadence time-domain surveys of the Transiting Exoplanet Survey Satellite and Palomar Transient Factory, suggesting that the variability selection method from well-sampled light curves can find AGNs that may not be discovered otherwise. These AGNs can have moderate to small variability amplitudes from the accretion disk, but many of them lack strong corona, emission lines from the central engine, or accretion power to dominate the mid-IR emission. The X-ray spectra of a subsample of bright sources are consistent with a power-law model. Upon inspecting the environments of our sample, we find that LLAGNs are more common in denser environments of galaxy clusters in contrast with the trend established in the literature for luminous AGNs at low redshifts, which is broadly consistent with our analysis result for luminous AGNs limited by a smaller sample size. This contrast in environmental properties between LLAGN and luminous AGNs suggests that LLAGNs may have different trigger mechanisms.  more » « less
Award ID(s):
2307802
PAR ID:
10634778
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
987
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
112
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a kinematic analysis based on the large integral field spectroscopy (IFS) dataset of SDSS-IV MaNGA (Sloan Digital Sky Survey/Mapping Nearby Galaxies at Apache Point Observatory; ∼10 000 galaxies). We have compiled a diverse sample of 594 unique active galactic nuclei (AGNs), identified through a variety of independent selection techniques, encompassing radio (1.4 GHz) observations, optical emission-line diagnostics (BPT), broad Balmer emission lines, mid-infrared colors, and hard X-ray emission. We investigated how ionized gas kinematics behave in these different AGN populations through stacked radial profiles of the [O III] 5007 emission-line width across each AGN population. We contrasted AGN populations against each other (and non-AGN galaxies) by matching samples by stellar mass, [O III] 5007 luminosity, morphology, and redshift. We find similar kinematics between AGNs selected by BPT diagnostics compared to broad-line-selected AGNs. We also identify a population of non-AGNs with similar radial profiles as AGNs, indicative of the presence of remnant outflows (or fossil outflows) of past AGN activity. We find that purely radio-selected AGNs display enhanced ionized gas line widths across all radii. This suggests that our radio-selection technique is sensitive to a population in which AGN-driven kinematic perturbations have been active for longer durations (potentially due to recurrent activity) than in purely optically selected AGNs. This connection between radio activity and extended ionized gas outflow signatures is consistent with recent evidence that suggests radio emission (expected to be diffuse) originated due to shocks from outflows. We conclude that different selection techniques can trace different AGN populations not only in terms of energetics but also in terms of AGN evolutionary stages. Our results are important in the context of the AGN duty cycle and highlight integral field unit data’s potential to deepen our knowledge of AGNs and galaxy evolution. 
    more » « less
  2. Abstract Periodic variability in active galactic nuclei (AGNs) is a promising method for studying subparsec supermassive black hole binaries (SMBHBs), which are a challenging detection target. While extensive searches have been made in the optical, X-ray, and gamma-ray bands, systematic infrared (IR) studies remain limited. Using data from the Wide-field Infrared Survey Explorer (WISE), which provides unique decade-long mid-IR light curves with a six-month cadence, we have conducted the first systematic search for SMBHB candidates based on IR periodicity. Analyzing a parent sample of 48,932 objects selected from about half a million AGNs, we have identified 28 candidate periodic AGNs with periods ranging from 1268 to 2437 days (in the observer frame), by fitting their WISE light curves with sinusoidal functions. However, our mock simulation of the parent sample indicates that stochastic variability can actually produce a similar number of periodic sources, underscoring the difficulty in robustly identifying real periodic signals with WISE light curves, given their current sampling. Notably, we find no overlap between our sample and optical periodic sources, which can be explained by a distinct preference for certain periods due to selection bias. By combining archived data from different surveys, we have identified a candidate exhibiting periodic behavior in both the optical and IR bands, a phenomenon that warrants further validation through observational tests. Our results highlight the potential of IR time-domain surveys, including future missions such as the Nancy Grace Roman Space Telescope, for identifying periodic AGNs, but complementary tests are still needed to determine their physical origins, such as SMBHBs. 
    more » « less
  3. null (Ed.)
    The north ecliptic pole (NEP) is an important region for extragalactic surveys. Deep and wide contiguous surveys are being performed by several space observatories, most currently with the eROSITA telescope. Several more are planned for the near future. We analyse all the ROSAT pointed and survey observations in a region of 40 deg 2 around the NEP, restricting the ROSAT field of view to the inner 30′ radius. We obtain an X-ray catalogue of 805 sources with 0.5−2 keV fluxes > 2.9 × 10 −15 erg cm −2 s −1 , about a factor of three deeper than the ROSAT All-Sky Survey in this field. The sensitivity and angular resolution of our data are comparable to the eROSITA All-Sky Survey expectations. The 50% position error radius of the sample of X-ray sources is ∼10″. We use HEROES optical and near-infrared imaging photometry from the Subaru and Canada/France/Hawaii telescopes together with GALEX, SDSS, Pan-STARRS, and WISE catalogues, as well as images from a new deep and wide Spitzer survey in the field to statistically identify the X-ray sources and to calculate photometric redshifts for the candidate counterparts. In particular, we utilize mid-infrared (mid-IR) colours to identify active galactic nucleus (AGN) X-ray counterparts. Despite the relatively large error circles and often faint counterparts, together with confusion issues and systematic errors, we obtain a rather reliable catalogue of 766 high-quality optical counterparts, corresponding redshifts and optical classifications. The quality of the dataset is sufficient to look at ensemble properties of X-ray source classes. In particular we find a new population of luminous absorbed X-ray AGN at large redshifts, identified through their mid-IR colours. This populous group of AGN was not recognized in previous X-ray surveys, but could be identified in our work due to the unique combination of survey solid angle, X-ray sensitivity, and quality of the multi-wavelength photometry. We also use the WISE and Spitzer photometry to identify a sample of 185 AGN selected purely through their mid-IR colours, most of which are not detected by ROSAT. Their redshifts and upper limits to X-ray luminosity and X-ray–to–optical flux ratios are even higher than for the new class of X-ray selected luminous type 2 AGN (AGN2); they are probably a natural extension of this sample. This unique dataset is important as a reference sample for future deep surveys in the NEP region, in particular for eROSITA and also for Euclid and SPHEREX. We predict that most of the absorbed distant AGN should be readily picked up by eROSITA, but they require sensitive mid-IR imaging to be recognized as optical counterparts. 
    more » « less
  4. Abstract Galaxy mergers are predicted to trigger accretion onto the central supermassive black holes, with the highest rates occurring during final coalescence. Previously, we have shown elevated rates of both optical and mid-IR selected active galactic nuclei (AGN) in post-mergers, but to date the prevalence of X-ray AGN has not been examined in the same systematic way. We present XMM-Newton data of 43 post-merger galaxies selected from the Sloan Digital Sky Survey along with 430 non-interacting control galaxies matched in stellar mass, redshift, and environment in order to test for an excess of hard X-ray (2–10 keV) emission in post-mergers attributable to triggered AGN. We find 2 X-ray detections in the post-mergers ($$4.7^{+9.3}_{-3.8}\%$$) and 9 in the controls ($$2.1^{+1.5}_{-1.0}\%$$), an excess of $$2.22^{+4.44}_{-2.22}$$, where the confidence intervals are 90%. While we therefore do not find statistically significant evidence for an X-ray AGN excess in post-mergers (p = 0.26), we find a factor of ∼17 excess of mid-IR AGN in our sample, consistent with past work and inconsistent with the observed X-ray excess (p = 2.7 × 10−4). Dominant, luminous AGN are therefore more frequent in post-mergers, and the lack of a comparable excess of 2–10 keV X-ray AGN suggests that AGN in post-mergers are more likely to be heavily obscured. Our results are consistent with the post-merger stage being characterised by enhanced AGN fueling, heavy AGN obscuration, and more intrinsically luminous AGN, in line with theoretical predictions. 
    more » « less
  5. Abstract Modern and future surveys effectively provide a panchromatic view for large numbers of extragalactic objects. Consistently modeling these multiwavelength survey data is a critical but challenging task for extragalactic studies. The Code Investigating GALaxy Emission ( cigale ) is an efficient python code for spectral energy distribution (SED) fitting of galaxies and active galactic nuclei (AGNs). Recently, a major extension of cigale (named x-cigale ) has been developed to account for AGN/galaxy X-ray emission and improve AGN modeling at UV-to-IR wavelengths. Here, we apply x-cigale to different samples, including Cosmological Evolution Survey (COSMOS) spectroscopic type 2 AGNs, Chandra Deep Field-South X-ray detected normal galaxies, Sloan Digital Sky Survey quasars, and COSMOS radio objects. From these tests, we identify several weaknesses of x-cigale and improve the code accordingly. These improvements are mainly related to AGN intrinsic X-ray anisotropy, X-ray binary emission, AGN accretion-disk SED shape, and AGN radio emission. These updates improve the fit quality and allow for new interpretation of the results, based on which we discuss physical implications. For example, we find that AGN intrinsic X-ray anisotropy is moderate, and can be modeled as L X ( θ ) ∝ 1 + cos θ , where θ is the viewing angle measured from the AGN axis. We merge the new code into the major branch of cigale , and publicly release this new version as cigale v2022.0 on https://cigale.lam.fr . 
    more » « less