Abstract This paper presents the first observed association between meteor radio afterglows (MRAs) and persistent trains (PTs) and provides the first evidence of a link between these two phenomena. Coobservations of four meteor trails (trains) from the Long Wavelength Array (LWA) telescopes in New Mexico and the Widefield Persistent Train (WiPT) camera associate the long‐lasting (tens of seconds), self‐generated radio emission known as MRAs with the long‐lasting (tens of minutes) optical emissions known as PTs. Each of the four MRAs presented in this paper were spatially and temporally coincident with a PT. In one case, the MRA follows a relatively small (≤400 m × 400 m) noticeably bright region (knot) of emission within the PT, whereas the other three cases were associated with broader regions of PT activity. As PTs are thought to be driven by exothermic chemical reactions between atmospheric oxygen and ablation products, we show that the same reactions, specifically those involving anions, may produce the necessary suprathermal electrons to power MRAs. We show that only one part in∼1010of the available power needs to be converted to radio emission in order to produce a typical MRA. 
                        more » 
                        « less   
                    This content will become publicly available on September 1, 2026
                            
                            Reassessing the Relationship Between Meteor Radio Afterglows and Optical Persistent Trains
                        
                    
    
            Abstract Meteor radio afterglows (MRAs) and optical persistent trains (PTs) are two types of long‐lived phenomena which are occasionally observed following the occurrence of a meteor. Both phenomena are thought to be produced by intrinsic emission mechanisms; PTs have been associated with chemiluminescent reactions between meteoric metals and atmospheric ozone whereas MRA emission arises due to radiation emitted by processes in the meteor's plasma trail. Previous research has identified an association between these phenomena, and proposed a mechanism by which the reactions responsible for PTs could also fuel MRAs. In this work, we investigate said connection using a substantially larger catalog containing hundreds of examples of each phenomenon. Using meteor data from the Global Meteor Network (GMN), we performed a directed search in all‐sky radio images obtained by the Long Wavelength Array (LWA) radio telescope to identify meteors with MRAs. The resulting catalog spanned nearly 2 years and contained a total of 2,887 meteors, with 675 MRA events and 372 PTs. Statistical analyses suggest that the connection between the two phenomena is not as strong as previously supposed. Additionally, we show that the MRA occurrence rates do not have a strong seasonal dependence, meteoroid strength dependence, or preference between meteor showers and sporadics. Interestingly, we find that a meteor's entry angle appears to play a significant role in whether an MRA is observed. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2103707
- PAR ID:
- 10634780
- Publisher / Repository:
- AGU
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 130
- Issue:
- 9
- ISSN:
- 2169-9380
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract This paper presents the results of a nearly 2‐year long campaign to detect and analyze meteor persistent trains (PTs)—self‐emitting phenomena which can linger up to an hour after their parent meteor. The modern understanding of PTs has been primarily developed from the Leonid storms at the turn of the century; our goal was to assess the validity of these conclusions using a diverse sample of meteors with a wide range of velocities and magnitudes. To this end, year‐round observations were recorded by the Widefield Persistent Train camera, 2nd edition (WiPT2) and were passed through a pipeline to filter out airplanes and flag potential meteors. These were classified by visual inspection based on the presence and duration of trains. Observed meteors were cross‐referenced with the Global Meteor Network (GMN) database, which independently detects and calculates meteor parameters, enabling statistical analysis of PT‐leaving meteors. There were 4,726 meteors codetected by the GMN, with 636 of these leaving trains. Among these were a large population of slow, dim meteors that left PTs; these slower meteors had a greater train production rate relative to their faster counterparts. Unlike prior research, we did not find a clear magnitude cutoff or a strong association with fast meteor showers. Additionally, we note several interesting trends not previously reported, which include PT eligibility being primarily determined by a meteor's terminal height and an apparent dynamical origin dependence that likely reflects physical meteoroid properties.more » « less
- 
            Abstract We conducted an all‐sky imaging transient search with the Owens Valley Radio Observatory Long Wavelength Array (OVRO‐LWA) data collected during the Perseid meteor shower in 2018. The data collection during the meteor shower was motivated to conduct a search for intrinsic radio emission from meteors below 60 MHz known as the meteor radio afterglows (MRAs). The data collected were calibrated and imaged using the core array to obtain lower angular resolution images of the sky. These images were input to a pre‐existing LWA transient search pipeline to search for MRAs as well as cosmic radio transients. This search detected 5 MRAs and did not find any cosmic transients. We further conducted peeling of bright sources, near‐field correction, visibility differencing and higher angular resolution imaging using the full array for these 5 MRAs. These higher angular resolution images were used to study their plasma emission structures and monitor their evolution as a function of frequency and time. With higher angular resolution imaging, we resolved the radio emission size scales to less than 1 km physical size at 100 km heights. The spectral index mapping of one of the long duration event showed signs of diffusion of plasma within the meteor trails. The unpolarized emission from the resolved radio components suggest resonant transition radiation as the possible radiation mechanism of MRAs.more » « less
- 
            Abstract Meteoroids of sub‐milligram sizes burn up high in the Earth's atmosphere and cause streaks of plasma trails detectable by meteor radars. The altitude at which these trails, or meteors, form depends on a number of factors including atmospheric density and the astronomical source populations from which these meteoroids originate. A previous study has shown that the altitude of these meteors is affected by long‐term linear trends and the 11‐year solar cycle related to changes in our atmosphere. In this work, we examine how shorter diurnal and seasonal variations in the altitude distribution of meteors are dependent on the geographical location at which the measurements are performed. We use meteoroid altitude data from 18 independent meteor radar stations at a broad range of latitudes and investigate whether there are local time (LT) and seasonal variations in the altitude of the peak meteor height, defined as the majority detection altitude of all meteors within a certain period, which differ from those expected purely from the variation in the visibility of their astronomical source. We find a consistent LT and seasonal response for the Northern Hemisphere locations regardless of latitude. However, the Southern Hemisphere locations exhibit much greater LT and seasonal variation. In particular, we find a complex response in the four stations located within the Southern Andes region, which indicates that the strong dynamical atmospheric activity, such as the gravity waves prevalent here, disrupts, and masks the seasonality and dependence on the astronomical sources.more » « less
- 
            ABSTRACT This work presents the result of sporadic meteor radiant density distribution using the Arecibo 430 MHz incoherent scatter radar (ISR) located in Puerto Rico for the first time. Although numerous meteor studies have been carried out using the Arecibo ISR, meteoroid radiant density distribution has remained a mystery as the Arecibo radar cannot measure vector velocity. A numerical orbital simulation algorithm using dynamic programming and stochastic gradient descent is designed to solve the sporadic meteoroid radiant density and the corresponding speed distributions of the meteors observed at Arecibo. The data set for the algorithm comprises over 250 000 meteors from Arecibo observations between 2009 and 2017. Five of the six recognized sporadic meteor sources can be identified from our result. There is no clearly identifiable South Apex source. Instead, there is a broad distribution between +/−30° ecliptic latitude, with the peak density located in the North Apex direction. Our results also indicate that the Arecibo radar is not sensitive to meteors travelling straight into or perpendicular to the antenna beam but is most sensitive to meteors with an arrival angle between 30° and 60°. Our analysis indicates that about 75 per cent of meteoroids observed by the Arecibo radar travel in prograde orbits when the impact probability is considered. Most of the retrograde meteoroids travel in inclined low-eccentricity orbits.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
