skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 7, 2026

Title: Deep RC: A Scalable Data Engineering and Deep Learning Pipeline
Significant obstacles exist in scientific domains including genetics, climate modeling, and astronomy due to the management, preprocess, and training on complicated data for deep learning. Even while several large-scale solutions offer distributed execution environments, open-source alternatives that integrate scalable runtime tools, deep learning and data frameworks on high-performance computing platforms remain crucial for accessibility and flexibility. In this paper, we introduce Deep Radical-Cylon(RC), a heterogeneous runtime system that combines data engineering, deep learning frameworks, and workflow engines across several HPC environments, including cloud and supercomputing infrastructures. Deep RC supports heterogeneous systems with accelerators, allows the usage of communication libraries like MPI, GLOO and NCCL across multi-node setups, and facilitates parallel and distributed deep learning pipelines by utilizing Radical Pilot as a task execution framework. By attaining an end-to-end pipeline including preprocessing, model training, and postprocessing with 11 neural forecasting models (PyTorch) and hydrology models (TensorFlow) under identical resource conditions, the system reduces 3.28 and 75.9 seconds, respectively. The design of Deep RC guarantees the smooth integration of scalable data frameworks, such as Cylon, with deep learning processes, exhibiting strong performance on cloud platforms and scientific HPC systems. By offering a flexible, high-performance solution for resource-intensive applications, this method closes the gap between data preprocessing, model training, and postprocessing.  more » « less
Award ID(s):
2411009
PAR ID:
10634837
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
28th edition of the workshop on Job Scheduling Strategies for Parallel Processing. JSSPP 2025 https://jsspp.org/
Date Published:
Format(s):
Medium: X
Location:
Milan, Italy
Sponsoring Org:
National Science Foundation
More Like this
  1. Significant obstacles exist in scientific domains including genetics, climate modeling, and astronomy due to the management, preprocess, and training on complicated data for deep learning. Even while several large-scale solutions offer distributed execution environments, open-source alternatives that integrate scalable runtime tools, deep learning and data frameworks on high-performance computing platforms remain crucial for accessibility and flexibility. In this paper, we introduce Deep Radical-Cylon(RC), a heterogeneous runtime system that combines data engineering, deep learning frameworks, and workflow engines across several HPC environments, including cloud and supercomputing infrastructures. Deep RC supports heterogeneous systems with accelerators, allows the usage of communication libraries like \texttt{MPI}, \texttt{GLOO} and \texttt{NCCL} across multi-node setups, and facilitates parallel and distributed deep learning pipelines by utilizing Radical Pilot as a task execution framework. By attaining an end-to-end pipeline including preprocessing, model training, and postprocessing with 11 neural forecasting models (PyTorch) and hydrology models (TensorFlow) under identical resource conditions, the system reduces 3.28 and 75.9 seconds, respectively. The design of Deep RC guarantees the smooth integration of scalable data frameworks, such as Cylon, with deep learning processes, exhibiting strong performance on cloud platforms and scientific HPC systems. By offering a flexible, high-performance solution for resource-intensive applications, this method closes the gap between data preprocessing, model training, and postprocessing. 
    more » « less
  2. Managing and preparing complex data for deep learning, a prevalent approach in large-scale data science can be challenging. Data transfer for model training also presents difficulties, impacting scientific fields like genomics, climate modeling, and astronomy. A large-scale solution like Google Pathways with a distributed execution environment for deep learning models exists but is proprietary. Integrating existing open-source, scalable runtime tools and data frameworks on high-performance computing (HPC) platforms is crucial to address these challenges. Our objective is to establish a smooth and unified method of combining data engineering and deep learning frameworks with diverse execution capabilities that can be deployed on various high-performance computing platforms, including cloud and supercomputers. We aim to support heterogeneous systems with accelerators, where Cylon and other data engineering and deep learning frameworks can utilize heterogeneous execution. To achieve this, we propose Radical-Cylon, a heterogeneous runtime system with a parallel and distributed data framework to execute Cylon as a task of Radical Pilot. We thoroughly explain Radical-Cylon’s design and development and the execution process of Cylon tasks using Radical Pilot. This approach enables the use of heterogeneous MPI-Communicators across multiple nodes. Radical-Cylon achieves better performance than Bare-Metal Cylon with minimal and constant overhead. Radical-Cylon achieves (4 15)% faster execution time than batch execution while performing similar join and sort operations with 35 million and 3.5 billion rows with the same resources. The approach aims to excel in both scientific and engineering research HPC systems while demonstrating robust performance on cloud infrastructures. This dual capability fosters collaboration and innovation within the open-source scientific research community.Not Available 
    more » « less
  3. Distributed deep learning framework tools should aim at high efficiency of training and inference of distributed exascale deep learning algorithms. There are three major challenges in this endeavor: scalability, adaptivity and efficiency. Any future framework will need to be adaptively utilized for a variety of heterogeneous hardware and network environments and will thus be required to be capable of scaling from single compute node up to large clusters. Further, it should be efficiently integrated into popular frameworks such as TensorFlow, PyTorch, etc. This paper proposes a dynamically hybrid (hierarchy) distribution structure for distributed deep learning, taking advantage of flexible synchronization on both centralized and decentralized architectures, implementing multi-level fine-grain parallelism on distributed platforms. It is scalable as the number of compute nodes increases, and can also adapt to various compute abilities, memory structures and communication costs. 
    more » « less
  4. In this paper, we present work towards the development of a new data analytics and machine learning (ML) framework, called MagmaDNN. Our main goal is to provide scalable, high-performance data analytics and ML solutions for scientific applications running on current and upcoming heterogeneous many-core GPU-accelerated architectures. To this end, since many of the functionalities needed are based on standard linear algebra (LA) routines, we designed MagmaDNN to derive its performance power from the MAGMA library. The close integration provides the fundamental (scalable high-performance) LA routines available in MAGMA as a backend to MagmaDNN. We present some design issues for performance and scalability that are specific to ML using Deep Neural Networks (DNN), as well as the MagmaDNN designs towards overcoming them. In particular, MagmaDNN uses well established HPC techniques from the area of dense LA, including task-based parallelization, DAG representations, scheduling, mixed-precision algorithms, asynchronous solvers, and autotuned hyperparameter optimization. We illustrate these techniques and their incorporation and use to outperform other frameworks, currently available. 
    more » « less
  5. In this paper, we present work towards the development of a new data analytics and machine learning (ML) framework, called MagmaDNN. Our main goal is to provide scalable, high-performance data analytics and ML solutions for scientific applications running on current and upcoming heterogeneous many-core GPU-accelerated architectures. To this end, since many of the functionalities needed are based on standard linear algebra (LA) routines, we designed MagmaDNN to derive its performance power from the MAGMA library. The close integration provides the fundamental (scalable high-performance) LA routines available in MAGMA as a backend to MagmaDNN. We present some design issues for performance and scalability that are specific to ML using Deep Neural Networks (DNN), as well as the MagmaDNN designs towards overcoming them. In particular, MagmaDNN uses well established HPC techniques from the area of dense LA, including task-based parallelization, DAG representations, scheduling, mixed-precision algorithms, asynchronous solvers, and autotuned hyperparameter optimization. We illustrate these techniques and their incorporation and use to outperform other frameworks, currently available. 
    more » « less