skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The effect of pre-shear protocols on the rheological characterization of epoxy nanocomposites
Abstract Nanostructured epoxy composite resins have broad usage in adhesives, coatings, composites, and 3D printing. With these materials, careful control of the rheological properties is critical to ensuring that the properties meet their required performance targets. However, it can be difficult to accurately measure the rheological properties. In this work, we establish a method to develop a reliable pre-shear (PS) procedure to repeatably measure the apparent yield stress of the resins, which is critical to ensure the accurate understanding of the material behavior. The resins in this study consisted of an epoxy resin with nanoclay as a shear thinning agent, ionic liquid (1-ethyl-3-methylimidazolium dicyanamide) as a latent curing agent, and poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) block copolymer (BCP) as a nanostructured component. We establish a methodology to evaluate the effectiveness of a pre-shear protocol and evaluate several methods to identify a pre-shear procedure that resulted in repeatable transient creep results on a rheometer. We identified that large amplitude oscillatory shear was the most effective method for these materials, and the optimal magnitude of the shear was dependent on the composition of the epoxy resins. Through the consistent application of this approach, we were able to use transient creep testing to identify the phase boundaries in the epoxy/BCP resins when the BCP micelles undergo an order-order transition from spherical to hexagonal micelles through changes in the yield stress of the material. This work adds to the new growing body of literature demonstrating the importance of establishing rigorous pre-shear conditions to improve the accuracy of structured yield stress fluids.  more » « less
Award ID(s):
2323317
PAR ID:
10634880
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Rheologica Acta
Volume:
64
Issue:
11
ISSN:
0035-4511
Format(s):
Medium: X Size: p. 661-671
Size(s):
p. 661-671
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The effect of vortex‐induced mechanical stresses on the fluorescent properties of dye‐containing poly(ethylene glycol)‐block‐poly(lactic acid) (PEG‐b‐PLA) block copolymer micelles has been investigated. PEG‐b‐PLA block copolymer micelles containing fluorescent dyes, 3,3′‐dioctadecyloxacarbocyanine perchlorate (DiO) and/or 1,1′‐dioctadecyl‐3,3,3′,3′‐tetramethylindocarbocyanine perchlorate (DiI), are prepared by a simple one‐step procedure that involves the self‐assembly of block copolymers and spontaneous incorporation of hydrophobic dyes into the core of the micelles. Upon vortexing, the micelle dispersion samples showed a decrease in fluorescence intensity in a rotational speed‐ and time‐dependent manner. The results demonstrated that the vortexing can alter the fluorescent properties of the dye‐containing PEG‐b‐PLA block copolymer micelle dispersion samples, suggesting the potential utility of block copolymer micelles as a mechanical stress‐responsive nanomaterial. 
    more » « less
  2. Abstract The rheology of the crust and mantle and the interaction of viscoelastic flow with seismic/aseismic slip on faults control the state of stress in the lithosphere over multiple seismic cycles. The rheological behavior of rocks is well constrained in a laboratory setting, but thein situproperties of the lithosphere and its lateral variations remain poorly known. Here, we access the lower‐crustal rheology in Southern California by exploiting 8 years of geodetic postseismic deformation following the 2010 El Mayor‐Cucapah earthquake. The data illuminate viscoelastic flow in the lower crust with lateral variations of effective viscosity correlated with the geological province. We show that a Burgers assembly with dashpots following a nonlinear constitutive law can approximate the temporal evolution of stress and strain rate, indicating the activation of nonlinear transient creep before steady‐state dislocation creep. The transient and background viscosities in the lower crust of the Salton Trough are on the order of ~1018and ~1019 Pa s, respectively, about an order of magnitude lower than those in the surrounding regions. We highlight the importance of transient creep, nonlinear flow laws, and lateral variations of rheological properties to capture the entire history of postseismic relaxation following the El Mayor‐Cucapah earthquake. 
    more » « less
  3. The formation and evolution of a heterogeneous flow and flow reversal are examined in highly elastic, gel-like wormlike micelles (WLMs) formed from an amphiphilic triblock poloxamer P234 in 2M NaCl. A combination of linear viscoelastic, steady shear, and creep rheology demonstrate that these WLMs have a yield stress and exhibit viscoelastic aging, similar to some soft glassy materials. Nonlinear shear rheology and rheoparticle tracking velocimetry reveal that these poloxamer WLMs undergo a period of strong elastic recoil and flow reversal after the onset of shear startup. As flow reversal subsides, a fluidized high shear rate region and a nearly immobile low shear rate region of fluid form, accompanied by wall slip and elastic instabilities. The features of this flow heterogeneity are reminiscent of those for aging yield stress fluids, where the heterogeneous flow forms during the initial stress overshoot and is sensitive to the inherent stress gradient of the flow geometry. Additionally, macroscopic bands that form transiently above a critical shear rate become “trapped” due to viscoelastic aging in the nearly immobile region. This early onset of the heterogeneous flow during the rapidly decreasing portion of the stress overshoot differs from that typically observed in shear banding WLMs and is proposed to be necessary for observing significant flow reversal. Exploring the early-time, transient behavior of this WLM gel with rheology similar to both WLM solutions and soft glassy materials provides new insights into spatially heterogeneous flows in both of these complex fluids. 
    more » « less
  4. Fungi such as Candida albicans exist in biofilm phenotypes, which present as viscoelastic materials; however, a method to measure linear viscoelastic moduli, yield stress, and yield strain is lacking. Characterization methods for fungal materials have been limited to techniques specific to particular industries. Here, we present a method to measure the shear stress, strain amplitude, and creep of C. albicans BWP17 biofilms. Our method includes features tailored to the analysis of fungi including an in vitro growth protocol attuned to the slow growth rates of C. albicans biofilms and a resultant cultured biofilm that has sufficient integrity to be transferred to the rheometer tooling without disrupting its structure. The method's performance is demonstrated by showing that results are insensitive to gap, evaporative sealant, length of experiment, and specimen radius. Multiscale imaging of the fungal biofilm showed complex entanglement networks at the hundred-micrometer scale. For a wild-type strain cultivated for 14 days, using small-amplitude oscillatory rheology, we found that the elastic (G′) and viscous (G″) moduli were nearly independent of frequency over the range 0.1–10 s −1 , with magnitudes of [Formula: see text] and [Formula: see text], respectively. The yield stress was approximately [Formula: see text]. We modeled the linear creep response of the fungal biofilm and found that C. albicans has a characteristic relaxation time of [Formula: see text] and a viscosity of [Formula: see text]. We applied this method to probe the effects of altered chitin deposition in the C. albicans cell wall. Differences between the biofilm's phenotypic cell shape and rheological properties in mutants with altered chitin synthase activity were resolved. Discovering how genotypic, phenotypic, and environmental factors impact the material properties of these microbial communities can have implications for understanding fungal biofilm growth and aid in the development of remediation strategies. 
    more » « less
  5. Abstract Traditionally, resins and hardeners are produced by chemical and petroleum industries. These industries make use of non-renewable energy resources like fossil fuels for manufacturing the resins and curing agents. In addition, most of the conventional curing agents used in epoxy resins are highly noxious in nature causing skin allergies and asthma. The green epoxy resin is capable of reducing these toxic effects but have few shortcomings including its cost and the mechanical performance of cured epoxy resin. On the other hand, there is a dearth of investigation in the evolution of green or sustainable curing agents known as bio-binders. This paper presents the prediction of mechanical properties by replacement of conventional curing agent with amine derivative synthesized from bio-degradable resource in a thermoset epoxy resin system. The properties are predicted by molecular dynamics simulations using Materials Studio Software. Graphical Abstract 
    more » « less