skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Breadcrumbs to the Goal: Goal-Conditioned Exploration from Human-in-the-Loop Feedback
Exploration and reward specification are fundamental and intertwined challenges for reinforcement learning. Solving sequential decision-making tasks requiring expansive exploration requires either careful design of reward functions or the use of novelty-seeking exploration bonuses. Human supervisors can provide effective guidance in the loop to direct the exploration process, but prior methods to leverage this guidance require constant synchronous high-quality human feedback, which is expensive and impractical to obtain. In this work, we present a technique called Human Guided Exploration (HuGE), which uses low-quality feedback from non-expert users that may be sporadic, asynchronous, and noisy. HuGE guides exploration for reinforcement learning not only in simulation but also in the real world, all without meticulous reward specification. The key concept involves bifurcating human feedback and policy learning: human feedback steers exploration, while self-supervised learning from the exploration data yields unbiased policies. This procedure can leverage noisy, asynchronous human feedback to learn policies with no hand-crafted reward design or exploration bonuses. HuGE is able to learn a variety of challenging multi-stage robotic navigation and manipulation tasks in simulation using crowdsourced feedback from non-expert users. Moreover, this paradigm can be scaled to learning directly on real-world robots, using occasional, asynchronous feedback from human supervisors.  more » « less
Award ID(s):
2212310
PAR ID:
10634939
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Neural Information Processing Systems 2023
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ideally, we would place a robot in a real-world environment and leave it there improving on its own by gathering more experience autonomously. However, algorithms for autonomous robotic learning have been challenging to realize in the real world. While this has often been attributed to the challenge of sample complexity, even sample-efficient techniques are hampered by two major challenges - the difficulty of providing well "shaped" rewards, and the difficulty of continual reset-free training. In this work, we describe a system for real-world reinforcement learning that enables agents to show continual improvement by training directly in the real world without requiring painstaking effort to hand-design reward functions or reset mechanisms. Our system leverages occasional non-expert human-in-the-loop feedback from remote users to learn informative distance functions to guide exploration while leveraging a simple self-supervised learning algorithm for goal-directed policy learning. We show that in the absence of resets, it is particularly important to account for the current "reachability" of the exploration policy when deciding which regions of the space to explore. Based on this insight, we instantiate a practical learning system - GEAR, which enables robots to simply be placed in real-world environments and left to train autonomously without interruption. The system streams robot experience to a web interface only requiring occasional asynchronous feedback from remote, crowdsourced, non-expert humans in the form of binary comparative feedback. We evaluate this system on a suite of robotic tasks in simulation and demonstrate its effectiveness at learning behaviors both in simulation and the real world. 
    more » « less
  2. Reward signals in reinforcement learning are expensive to design and often require access to the true state which is not available in the real world. Common alternatives are usually demonstrations or goal images which can be labor-intensive to collect. On the other hand, text descriptions provide a general, natural, and low-effort way of communicating the desired task. However, prior works in learning text-conditioned policies still rely on rewards that are defined using either true state or labeled expert demonstrations. We use recent developments in building large-scale visuolanguage models like CLIP to devise a framework that generates the task reward signal just from goal text description and raw pixel observations which is then used to learn the task policy. We evaluate the proposed framework on control and robotic manipulation tasks. Finally, we distill the individual task policies into a single goal text conditioned policy that can generalize in a zero-shot manner to new tasks with unseen objects and unseen goal text descriptions. 
    more » « less
  3. null (Ed.)
    Conveying complex objectives to reinforcement learning (RL) agents can often be difficult, involving meticulous design of reward functions that are sufficiently informative yet easy enough to provide. Human-in-the-loop RL methods allow practitioners to instead interactively teach agents through tailored feedback; however, such approaches have been challenging to scale since human feedback is very expensive. In this work, we aim to make this process more sample- and feedback-efficient. We present an off-policy, interactive RL algorithm that capitalizes on the strengths of both feedback and off-policy learning. Specifically, we learn a reward model by actively querying a teacher’s preferences between two clips of behavior and use it to train an agent. To enable off-policy learning, we relabel all the agent’s past experience when its reward model changes. We additionally show that pre-training our agents with unsupervised exploration substantially increases the mileage of its queries. We demonstrate that our approach is capable of learning tasks of higher complexity than previously considered by human-in-the-loop methods, including a variety of locomotion and robotic manipulation skills. We also show that our method is able to utilize real-time human feedback to effectively prevent reward exploitation and learn new behaviors that are difficult to specify with standard reward functions. 
    more » « less
  4. null (Ed.)
    Conveying complex objectives to reinforcement learning (RL) agents can often be difficult, involving meticulous design of reward functions that are sufficiently informative yet easy enough to provide. Human-in-the-loop RL methods allow practitioners to instead interactively teach agents through tailored feedback; however, such approaches have been challenging to scale since human feedback is very expensive. In this work, we aim to make this process more sample- and feedback-efficient. We present an off-policy, interactive RL algorithm that capitalizes on the strengths of both feedback and off-policy learning. Specifically, we learn a reward model by actively querying a teacher’s preferences between two clips of behavior and use it to train an agent. To enable off-policy learning, we relabel all the agent’s past experience when its reward model changes. We additionally show that pre-training our agents with unsupervised exploration substantially increases the mileage of its queries. We demonstrate that our approach is capable of learning tasks of higher complexity than previously considered by human-in-the-loop methods, including a variety of locomotion and robotic manipulation skills. We also show that our method is able to utilize real-time human feedback to effectively prevent reward exploitation and learn new behaviors that are difficult to specify with standard reward functions. 
    more » « less
  5. We study the problem of cross-embodiment inverse reinforcement learning, where we wish to learn a reward function from video demonstrations in one or more embodiments and then transfer the learned reward to a different embodiment (e.g., different action space, dynamics, size, shape, etc.). Learning reward functions that transfer across embodiments is important in settings such as teaching a robot a policy via human video demonstrations or teaching a robot to imitate a policy from another robot with a different embodiment. However, prior work has only focused on cases where near-optimal demonstrations are available, which is often difficult to ensure. By contrast, we study the setting of cross-embodiment reward learning from mixed-quality demonstrations. We demonstrate that prior work struggles to learn generalizable reward representations when learning from mixed-quality data. We then analyze several techniques that leverage human feedback for representation learning and alignment to enable effective cross-embodiment learning. Our results give insight into how different representation learning techniques lead to qualitatively different reward shaping behaviors and the importance of human feedback when learning from mixed-quality, mixed-embodiment data. 
    more » « less