Abstract Previous work that studied hexagonal boron nitride (h‐BN) memristor DC resistive‐switching characteristics is extended to include an experimental understanding of their dynamic behavior upon programming or synaptic weight update. The focus is on the temporal resistive switching response to driving stimulus (programming voltage pulses) effecting conductance updates during training in neural network crossbar implementations. Test arrays are fabricated at the wafer level, enabled by the transfer of CVD‐grown few‐layer (8 layer) or multi‐layer (18 layer) h‐BN films. A comprehensive study of their temporal response under various conditions–voltage pulse amplitude, edge rate (pulse rise/fall times), and temperature–provides new insights into the resistive switching process toward optimized devices and improvements in their implementation of artificial neural networks. The h‐BN memristors can achieve multi‐state operation through ultrafast pulsed switching (< 25 ns) with high energy efficiency (≈10 pJ pulse−1).
more »
« less
This content will become publicly available on December 16, 2025
Design of a sequestration-based network with tunable pulsing dynamics
Incoherent feedforward networks exhibit the ability to generate temporal pulse behavior. However, exerting control over specific dynamic properties, such as amplitude and rise time, poses a challenge and is intricately tied to the network’s implementation. In this study, we focus on analyzing sequestration-based networks capable of exhibiting pulse behavior. By employing time-scale separation in the fast sequestration regime, we approximate the temporal dynamics of these networks. This approach allows us to establish a mapping that elucidates the impact of varying the kinetic rates and pulse specifications, including amplitude and rise time. Furthermore, we introduce a positive feedback mechanism to regulate the amplitude of the pulsing response.
more »
« less
- Award ID(s):
- 2107483
- PAR ID:
- 10635054
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 979-8-3503-1633-9
- Page Range / eLocation ID:
- 6286 to 6291
- Format(s):
- Medium: X
- Location:
- Milan, Italy
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Multimode fibers are explored widely for optical communication, spectroscopy, imaging, and sensing applications. Here we demonstrate a single-shot full-field temporal measurement technique based on a multimode fiber. The complex spatiotemporal speckle field is created by a reference pulse propagating through the fiber, and it interferes with a signal pulse. From the time-integrated interference pattern, both the amplitude and the phase of the signal are retrieved. The simplicity and high sensitivity of our scheme illustrate the potential of multimode fibers as versatile and multi-functional sensors.more » « less
-
In this paper, we numerically optimize broadband pulse shapes that maximize Hahn echo amplitudes. Pulses are parameterized as neural networks (NN), nonlinear amplitude limited Fourier series (FS), and discrete time series (DT). These are compared to an optimized choice of the conventional hyperbolic secant (HS) pulse shape. A power constraint is included, as are realistic shape distortions due to power amplifier nonlinearity and the transfer function of the microwave resonator. We find that the NN, FS, and DT parameterizations perform equivalently, offer improvements over the best HS pulses, and contain a large number of equivalent optimal maxima, implying the flexibility to include further constraints or optimization goals in future designs.more » « less
-
In the one-dimensional case, the amplitude of a pulse that propagates in a homogeneous material whose properties are instantaneously changed in time will undergo an exponential increase due to the interference between the reflected and transmitted pulses generated at each sudden switch. Here, we resolve the issue by designing suitable reciprocal PT-symmetric space-time microstructures so that the interference between the scattered waves is such that the overall amplitude of the wave will be constant in time in each constituent material. Remarkably, for the geometries proposed here, a pulse will propagate with constant amplitude regardless of the impedance between the constituent materials, and for some, regardless of the wave speed mismatch. We extend, then, these results to the two-dimensional case, by proposing suitable geometries that avoid the blow up of the wave amplitude at the source point due to the scattering associated with time modulation. Given that the energy associated with the wave will increase exponentially in time, this creates the possibility to exploit the stable propagation of the pulse to accumulate energy for harvesting.more » « less
-
null (Ed.)ABSTRACT We report the result of measurements of a gradual shift of the integrated pulses towards later spin phase of the anomalous pulsar B0943+10 at high radio frequencies. We have used observations from the Arecibo Observatory and the GMRT at 327 and 325 MHz correspondingly. For the measurements, we have proposed a special method for calculating the correct positions of the partially merged two components of the pulse profile shape with significant temporal changes in their amplitude ratio. The exponential change in the pulse phase with an amplitude of 4 ms and characteristic time of about 1 h has been found. Comparison of our measurements at 325 and 327 MHz with those at the lower frequencies of 25–80, 62 and 112 MHz have shown that the character of the process does not depend on frequency across a wide frequency range. The result is very important for constraining the nature of the delay. It supports the assumption that the process results from changes in the vacuum gap near the surface of the pulsar. The further correlation between changes in the pulse phase and its intensity is discussed.more » « less
An official website of the United States government
