skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Developmental assembly of multi-component polymer systems through interconnected synthetic gene networks in vitro
Living cells regulate the dynamics of developmental events through interconnected signaling systems that activate and deactivate inert precursors. This suggests that similarly, synthetic biomaterials could be designed to develop over time by using chemical reaction networks to regulate the availability of assembling components. Here we demonstrate how the sequential activation or deactivation of distinct DNA building blocks can be modularly coordinated to form distinct populations of self-assembling polymers using a transcriptional signaling cascade of synthetic genes. Our building blocks are DNA tiles that polymerize into nanotubes, and whose assembly can be controlled by RNA molecules produced by synthetic genes that target the tile interaction domains. To achieve different RNA production rates, we use a strategy based on promoter “nicking” and strand displacement. By changing the way the genes are cascaded and the RNA levels, we demonstrate that we can obtain spatially and temporally different outcomes in nanotube assembly, including random DNA polymers, block polymers, and as well as distinct autonomous formation and dissolution of distinct polymer populations. Our work demonstrates a way to construct autonomous supramolecular materials whose properties depend on the timing of molecular instructions for self-assembly, and can be immediately extended to a variety of other nucleic acid circuits and assemblies.  more » « less
Award ID(s):
2107483
PAR ID:
10635055
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Nature Communications
Volume:
15
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In most synthetic self-assembly processes the size of the final structure grows unbound and is only limited by the number of accessible microscopic building blocks. In comparison, biological assemblies can autonomously regulate their size and shape. One mechanism for such self-regulation is based on the chirality of microscopic units. Chirality induces a twisted geometry of building blocks that is incompatible with long-ranged crystalline packing, thereby stopping the assembly’s growth at a given stage. Chiral self-regulating self-assemblies, based on thermodynamic equilibration rather than kinetic trapping, remain an elusive target that has attracted considerable attention. So far studies of chiral self-assembly processes have focused on non-responsive systems, whose equilibrium points are not easily shifted in situ, which limits their versatility and applicability. Here, we demonstrate stimuli-responsive self-regulating self-assembly. This assembly is composed of chiral and magnetically alignable nanorods, where the effective chirality is modulable by balancing chirality-induced twisting with magnet-induced untwisting alignment. Changing the magnetic field intensity, controls the strength of self-regulation, leading to assemblies whose sizes and shapes are rationally controlled. The described size/shape control mechanism is tunable, reversible, robust, and widely applicable, opening up new possibilities for generating biomimetics structures with desirable functions and properties. 
    more » « less
  2. Throughout nature, self-assembly gives rise to functional supramolecular biomaterials that can perform complex tasks with extraordinary efficiency and specificity. Inspired by these examples, self-assembly is increasingly used to fabricate synthetic supramolecular biomaterials for diverse applications in biomedicine and biotechnology. Peptides are particularly attractive as building blocks for these materials because they are based on naturally derived amino acids that are biocompatible and biodegradable; they can be synthesized using scalable and cost-effective methods, and their sequence can be tailored to encode formation of diverse architectures. To endow synthetic supramolecular biomaterials with functional capabilities, it is now commonplace to conjugate self-assembling building blocks to molecules having a desired functional property, such as selective recognition of a cell surface receptor or soluble protein, antigenicity, or enzymatic activity. This review surveys recent advances in using self-assembling peptides as handles to incorporate biologically active molecules into supramolecular biomaterials. Particular emphasis is placed on examples of functional nanofibers, nanovesicles, and other nano-scale structures that are fabricated by linking self-assembling peptides to proteins and carbohydrates. Collectively, this review highlights the enormous potential of these approaches to create supramolecular biomaterials with sophisticated functional capabilities that can be finely tuned to meet the needs of downstream applications. 
    more » « less
  3. Abstract We present a strategy to control dynamically the loading and release of molecular ligands from synthetic nucleic acid receptors using in vitro transcription. We demonstrate this by engineering three model synthetic DNA‐based receptors: a triplex‐forming DNA complex, an ATP‐binding aptamer, and a hairpin strand, whose ability to bind their specific ligands can be cotranscriptionally regulated (activated or inhibited) through specific RNA molecules produced by rationally designed synthetic genes. The kinetics of our DNA sensors and their genetically generated inputs can be captured using differential equation models, corroborating the predictability of the approach used. This approach shows that highly programmable nucleic acid receptors can be controlled with molecular instructions provided by dynamic transcriptional systems, illustrating their promise in the context of coupling DNA nanotechnology with biological signaling. 
    more » « less
  4. Abstract Photonic crystals—a class of materials whose optical properties derive from their structure in addition to their composition—can be created by self-assembling particles whose sizes are comparable to the wavelengths of visible light. Proof-of-principle studies have shown that DNA can be used to guide the self-assembly of micrometer-sized colloidal particles into fully programmable crystal structures with photonic properties in the visible spectrum. However, the extremely temperature-sensitive kinetics of micrometer-sized DNA-functionalized particles has frustrated attempts to grow large, monodisperse crystals that are required for photonic metamaterial applications. Here we describe a robust two-step protocol for self-assembling single-domain crystals that contain millions of optical-scale DNA-functionalized particles: Monodisperse crystals are initially assembled in monodisperse droplets made by microfluidics, after which they are grown to macroscopic dimensions via seeded diffusion-limited growth. We demonstrate the generality of our approach by assembling different macroscopic single-domain photonic crystals with metamaterial properties, like structural coloration, that depend on the underlying crystal structure. By circumventing the fundamental kinetic traps intrinsic to crystallization of optical-scale DNA-coated colloids, we eliminate a key barrier to engineering photonic devices from DNA-programmed materials. 
    more » « less
  5. In self-assembling systems, geometric frustration leads to complex states characterized by internal gradients of shape misfit. Frustrated assemblies have drawn recent interest due to the unique possibility that their thermodynamics can sense and select the finite size of assembly at length scales much larger than constituent building blocks or their interactions. At present, self-limitation is chiefly understood to derive from zero-temperature considerations, specifically the competition between cohesion and scale-dependent elastic costs of frustration. While effects of entropy and finite-temperature fluctuations are necessarily significant for self-assembling systems, their impact on the self-limiting states of frustrated assemblies is not known. We introduce a generic, minimal model of frustrated assembly and establish its finite-temperature and concentration-dependent thermodynamics by way of simulation and continuum theory. The phase diagram is marked by three distinct states of translation order: a dispersed vapor, a defect-riddled condensate, and the self-limiting aggregate state. We show that, at finite temperature, the self-limiting state is stable at intermediate frustration. Furthermore, in contrast to the prevailing picture, its thermodynamic boundaries with the macroscopic disperse and bulk states are temperature controlled, pointing to the essential importance of translational and conformational entropy in their formation. 
    more » « less