skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Forces Involved with Labor and Delivery—A Biomechanical Perspective
Childbirth is a primarily biomechanical process of physiology, and one that engineers have recently begun to address in a broader fashion. Computational models are being developed to address the biomechanical effects of parturition on both maternal and fetal tissues. Experimental research is being conducted to understand how maternal tissues adapt to intrauterine forces near the onset of labor. All of this research requires an understanding of the forces that are developed through maternal efforts—both uterine contractions and semi-voluntary pushing—and that can be applied by the clinician to assist with the delivery. This work reviews the current state of knowledge regarding forces of labor and delivery, with a focus on macro-level biomechanics.  more » « less
Award ID(s):
2028474
PAR ID:
10635071
Author(s) / Creator(s):
Publisher / Repository:
Biomedical Engineering Society
Date Published:
Journal Name:
Annals of Biomedical Engineering
Volume:
49
Issue:
8
ISSN:
0090-6964
Page Range / eLocation ID:
1819 to 1835
Subject(s) / Keyword(s):
Biomechanics labor and delivery review
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rappoport, Nadav (Ed.)
    Child birth via Cesarean section accounts for approximately 32% of all births each year in the United States. A variety of risk factors and complications can lead caregivers and patients to plan for a Cesarean delivery in advance before onset of labor. However, a non-trivial subset of Cesarean sections (∼25%) are unplanned and occur after an initial trial of labor is attempted. Unfortunately, patients who deliver via unplanned Cesarean sections have increased maternal morbidity and mortality rates and higher rates of neonatal intensive care admissions. In an effort to develop models aimed at improving health outcomes in labor and delivery, this work seeks to explore the use of national vital statistics data to quantify the likelihood of an unplanned Cesarean section based on 22 maternal characteristics. Machine learning techniques are used to ascertain influential features, train and evaluate models, and assess accuracy against available test data. Based on cross-validation results from a large training cohort ( n = 6,530,467 births), the gradient-boosted tree algorithm was identified as the best performer and was evaluated on a large test cohort ( n = 10,613,877 births) for two prediction scenarios. Area under the receiver operating characteristic curves of 0.77 or higher and recall scores of 0.78 or higher were obtained and the resulting models are well calibrated. Combined with feature importance analysis to explain why certain maternal characteristics lead to a specific prediction in individual patients, the developed analysis pipeline provides additional quantitative information to aid in the decision process on whether to plan for a Cesarean section in advance, a substantially safer option among women at a high risk of unplanned Cesarean delivery during labor. 
    more » « less
  2. Abstract Childbirth or labor, as the final phase of a pregnancy, is a biomechanical process that delivers the fetus from the uterus. It mainly involves two important biological structures in the mother, the uterus—generating the pushing force on the fetus—and the pelvis (bony pelvis and pelvic floor muscles)—resisting the movement of the fetus. The existing computational models developed in this field that simulate the childbirth process have focused on either the uterine expulsion force or the resistive structures of the pelvis, not both. An FEM model including both structures as a system was developed in this paper to simulate the fetus delivery process in ls-dyna. Uterine active contraction was driven by contractile fiber elements using the Hill material model. The passive portion of the uterus and pelvic floor muscles were modeled with Neo Hookean and Mooney–Rivlin materials, respectively. The bony pelvis was modeled as a rigid body. The fetus was divided into three components: the head, neck, and body. Three uterine active contraction cycles were modeled. The model system was validated based on multiple outputs from the model, including the stress distribution within the uterus, the maximum Von Mises and principal stress on the pelvic floor muscles, the duration of the second stage of the labor, and the movement of the fetus. The developed model system can be applied to investigate the effects of pathomechanics related to labor, such as pelvic floor disorders and brachial plexus injury. 
    more » « less
  3. Abstract Nucleic acid delivery with mRNA lipid nanoparticles are being developed for targeting a wide array of tissues and cell types. However, targeted delivery to the bone microenvironment remains a significant challenge in the field, due in part to low local blood flow and poor interactions between drug carriers and bone material. Here we report bone‐targeting ionizable lipids incorporating a piperazine backbone and bisphosphate moieties, which bind tightly with hydroxyapatite ([Ca5(PO4)3OH]), a key component of mineralized tissues. These lipids demonstrate biocompatibility and low toxicity in both vitro and in vivo studies. LNP formulated with these lipids facilitated efficient cellular transfection and improved binding to hydroxyapatite in vitro, and targeted delivery to the bone microenvironment in vivo following systemic administration. Overall, our findings demonstrate the critical role of the piperazine backbone in a novel ionizable lipid, which incorporates a bisphosphonate group to enable efficient bone‐targeted delivery, highlighting the potential of rational design of ionizable lipids for next‐generation bone‐targeting delivery systems. 
    more » « less
  4. Abstract The purpose of this computational study was to investigate the effects of neonate-focused clinical delivery maneuvers on brachial plexus (BP) during shoulder dystocia. During shoulder dystocia, the anterior shoulder of the neonate is obstructed behind the symphysis pubis of the maternal pelvis, postdelivery of the neonate's head. This is managed by a series of clinical delivery maneuvers. The goal of this study was to simulate these delivery maneuvers and study their effects on neonatal BP strain. Using madymo models of a maternal pelvis and a 90th-percentile neonate, various delivery maneuvers and positions were simulated including the lithotomy position alone of the maternal pelvis, delivery with the application of various suprapubic pressures (SPPs), neonate in an oblique position, and during posterior arm delivery maneuver. The resulting BP strain (%) along with the required maternal delivery force was reported in these independently simulated scenarios. The lithotomy position alone served as the baseline. Each of the successive maneuvers reported a decrease in the required delivery force and resulting neonatal BP strain. As the applied SPP force increased (three scenarios simulated), the required maternal delivery force and neonatal BP strain decreased. A further decrease in both delivery force and neonatal BP strain was observed in the oblique position, with the lowest delivery force and neonatal BP strain reported during the posterior arm delivery maneuver. Data obtained from the improved computational models in this study enhance our understanding of the effects of clinical maneuvers on neonatal BP strain during complicated birthing scenarios such as shoulder dystocia. 
    more » « less
  5. null (Ed.)
    Abstract The biomechanical process of childbirth is necessary to usher in new lives—but it can also result in trauma. This physically intense process can put both the mother and the child at risk of injuries and complications that have life-long impact. Computational models, as a powerful tool to simulate and explore complex phenomena, have been used to improve our understanding of childbirth processes and related injuries since the 1990s. The goal of this paper is to review and summarize the breadth and current state of the computational models of childbirth in the literature—focusing on those that investigate the mechanical process and effects. We first summarize the state of critical characteristics that have been included in computational models of childbirth (i.e., maternal anatomy, fetal anatomy, cardinal movements, and maternal soft tissue mechanical behavior). We then delve into the findings of the past studies of birth processes and mechanical injuries in an effort to bridge the gap between the theoretical, numerical assessment and the empirical, clinical observations and practices. These findings are from applications of childbirth computational models in four areas: (1) the process of childbirth itself, (2) maternal injuries, (3) fetal injuries, and (4) protective measures employed by clinicians during delivery. Finally, we identify some of the challenges that computational models still face and suggest future directions through which more biofidelic simulations of childbirth might be achieved, with the goal that advancing models may provide more efficient and accurate, patient-specific assessment to support future clinical decision-making. 
    more » « less