skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optimal mode of delivery in pregnancy: Individualized predictions using national vital statistics data
Child birth via Cesarean section accounts for approximately 32% of all births each year in the United States. A variety of risk factors and complications can lead caregivers and patients to plan for a Cesarean delivery in advance before onset of labor. However, a non-trivial subset of Cesarean sections (∼25%) are unplanned and occur after an initial trial of labor is attempted. Unfortunately, patients who deliver via unplanned Cesarean sections have increased maternal morbidity and mortality rates and higher rates of neonatal intensive care admissions. In an effort to develop models aimed at improving health outcomes in labor and delivery, this work seeks to explore the use of national vital statistics data to quantify the likelihood of an unplanned Cesarean section based on 22 maternal characteristics. Machine learning techniques are used to ascertain influential features, train and evaluate models, and assess accuracy against available test data. Based on cross-validation results from a large training cohort ( n = 6,530,467 births), the gradient-boosted tree algorithm was identified as the best performer and was evaluated on a large test cohort ( n = 10,613,877 births) for two prediction scenarios. Area under the receiver operating characteristic curves of 0.77 or higher and recall scores of 0.78 or higher were obtained and the resulting models are well calibrated. Combined with feature importance analysis to explain why certain maternal characteristics lead to a specific prediction in individual patients, the developed analysis pipeline provides additional quantitative information to aid in the decision process on whether to plan for a Cesarean section in advance, a substantially safer option among women at a high risk of unplanned Cesarean delivery during labor.  more » « less
Award ID(s):
1838901 2217242
PAR ID:
10466379
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Rappoport, Nadav
Publisher / Repository:
PLOS Digital Health
Date Published:
Journal Name:
PLOS Digital Health
Volume:
1
Issue:
12
ISSN:
2767-3170
Page Range / eLocation ID:
e0000166
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Objective: The objective of the study is to build models for early prediction of risk for developing multiple organ dysfunction (MOD) in pediatric intensive care unit (PICU) patients. Design: The design of the study is a retrospective observational cohort study. Setting: The setting of the study is at a single academic PICU at the Johns Hopkins Hospital, Baltimore, MD. Patients: The patients included in the study were <18 years of age admitted to the PICU between July 2014 and October 2015. Measurements and main results: Organ dysfunction labels were generated every minute from preceding 24-h time windows using the International Pediatric Sepsis Consensus Conference (IPSCC) and Proulx et al. MOD criteria. Early MOD prediction models were built using four machine learning methods: random forest, XGBoost, GLMBoost, and Lasso-GLM. An optimal threshold learned from training data was used to detect high-risk alert events (HRAs). The early prediction models from all methods achieved an area under the receiver operating characteristics curve ≥0.91 for both IPSCC and Proulx criteria. The best performance in terms of maximum F1-score was achieved with random forest (sensitivity: 0.72, positive predictive value: 0.70, F1-score: 0.71) and XGBoost (sensitivity: 0.8, positive predictive value: 0.81, F1-score: 0.81) for IPSCC and Proulx criteria, respectively. The median early warning time was 22.7 h for random forest and 37 h for XGBoost models for IPSCC and Proulx criteria, respectively. Applying spectral clustering on risk-score trajectories over 24 h following early warning provided a high-risk group with ≥0.93 positive predictive value. Conclusions: Early predictions from risk-based patient monitoring could provide more than 22 h of lead time for MOD onset, with ≥0.93 positive predictive value for a high-risk group identified pre-MOD. 
    more » « less
  2. Unplanned intensive care units (ICU) readmissions and in-hospital mortality of patients are two important metrics for evaluating the quality of hospital care. Identifying patients with higher risk of readmission to ICU or of mortality can not only protect those patients from potential dangers, but also reduce the high costs of healthcare. In this work, we propose a new method to incorporate information from the Electronic Health Records (EHRs) of patients and utilize hyperbolic embeddings of a medical ontology (i.e., ICD-9) in the prediction model. The results prove the effectiveness of our method and show that hyperbolic embeddings of ontological concepts give promising performance. 
    more » « less
  3. Accurate prediction and monitoring of patient health in the intensive care unit can inform shared decisions regarding appropriateness of care delivery, risk-reduction strategies, and intensive care resource use. Traditionally, algorithmic solutions for patient outcome prediction rely solely on data available from electronic health records (EHR). In this pilot study, we explore the benefits of augmenting existing EHR data with novel measurements from wrist-worn activity sensors as part of a clinical environment known as the Intelligent ICU. We implemented temporal deep learning models based on two distinct sources of patient data: (1) routinely measured vital signs from electronic health records, and (2) activity data collected from wearable sensors. As a proxy for illness severity, our models predicted whether patients leaving the intensive care unit would be successfully or unsuccessfully discharged from the hospital. We overcome the challenge of small sample size in our prospective cohort by applying deep transfer learning using EHR data from a much larger cohort of traditional ICU patients. Our experiments quantify added utility of non-traditional measurements for predicting patient health, especially when applying a transfer learning procedure to small novel Intelligent ICU cohorts of critically ill patients. 
    more » « less
  4. Abstract STUDY QUESTION Do daughters of older mothers have lower fecundability? SUMMARY ANSWER In this cohort study of North American pregnancy planners, there was virtually no association between maternal age ≥35 years and daughters’ fecundability. WHAT IS KNOWN ALREADY Despite suggestive evidence that daughters of older mothers may have lower fertility, only three retrospective studies have examined the association between maternal age and daughter’s fecundability. STUDY DESIGN, SIZE, DURATION Prospective cohort study of 6689 pregnancy planners enrolled between March 2016 and January 2020. PARTICIPANTS/MATERIALS, SETTING, METHODS Pregnancy Study Online (PRESTO) is an ongoing pre-conception cohort study of pregnancy planners (age, 21-45 years) from the USA and Canada. We estimated fecundability ratios (FR) for maternal age at the participant’s birth using multivariable proportional probabilities regression models. MAIN RESULTS AND THE ROLE OF CHANCE Daughters of mothers ≥30 years were less likely to have previous pregnancies (or pregnancy attempts) or risk factors for infertility, although they were more likely to report that their mother had experienced problems conceiving. The proportion of participants with prior unplanned pregnancies, a birth before age 21, ≥3 cycles of attempt at study entry or no follow-up was greater among daughters of mothers <25 years. Compared with maternal age 25–29 years, FRs (95% CI) for maternal age <20, 20–24, 30–34, and ≥35 were 0.72 (0.61, 0.84), 0.92 (0.85, 1.00), 1.08 (1.00, 1.17), and 1.00 (0.89, 1.12), respectively. LIMITATIONS, REASONS FOR CAUTION Although the examined covariates did not meaningfully affect the associations, we had limited information on the participants’ mother. Differences by maternal age in reproductive history, infertility risk factors and loss to follow-up suggest that selection bias may partly explain our results. WIDER IMPLICATIONS OF THE FINDINGS Our finding that maternal age 35 years or older was not associated with daughter’s fecundability is reassuring, considering the trend towards delayed childbirth. However, having been born to a young mother may be a marker of low fecundability among pregnancy planners. STUDY FUNDING/COMPETING INTEREST(S) PRESTO was funded by NICHD Grants (R21-HD072326 and R01-HD086742) and has received in-kind donations from Swiss Precision Diagnostics, FertilityFriend.com, Kindara.com, and Sandstone Diagnostics. Dr Wise is a fibroid consultant for AbbVie, Inc. TRIAL REGISTRATION NUMBER n/a 
    more » « less
  5. Childbirth is a primarily biomechanical process of physiology, and one that engineers have recently begun to address in a broader fashion. Computational models are being developed to address the biomechanical effects of parturition on both maternal and fetal tissues. Experimental research is being conducted to understand how maternal tissues adapt to intrauterine forces near the onset of labor. All of this research requires an understanding of the forces that are developed through maternal efforts—both uterine contractions and semi-voluntary pushing—and that can be applied by the clinician to assist with the delivery. This work reviews the current state of knowledge regarding forces of labor and delivery, with a focus on macro-level biomechanics. 
    more » « less