Abstract Since its invention, optical frequency comb has revolutionized a broad range of subjects from metrology to spectroscopy. The recent development of microresonator-based frequency combs (microcombs) provides a unique pathway to create frequency comb systems on a chip. Indeed, microcomb-based spectroscopy, ranging, optical synthesizer, telecommunications and astronomical calibrations have been reported recently. Critical to many of the integrated comb systems is the broad coverage of comb spectra. Here, microcombs of more than two-octave span (450 nm to 2,008 nm) is demonstrated throughχ(2)andχ(3)nonlinearities in a deformed silica microcavity. The deformation lifts the circular symmetry and creates chaotic tunneling channels that enable broadband collection of intracavity emission with a single waveguide. Our demonstration introduces a new degree of freedom, cavity deformation, to the microcomb studies, and our microcomb spectral range is useful for applications in optical clock, astronomical calibration and biological imaging.
more »
« less
This content will become publicly available on April 1, 2026
Vernier microcombs for integrated optical atomic clocks
Abstract Kerr microcombs have drawn substantial interest as mass-manufacturable, compact alternatives to bulk frequency combs. This could enable the deployment of many comb-reliant applications previously confined to laboratories. Particularly enticing is the prospect of microcombs performing optical frequency division in compact optical atomic clocks. Unfortunately, it is difficult to meet the self-referencing requirement of microcombs in these systems owing to the approximately terahertz repetition rates typically required for octave-spanning comb generation. In addition, it is challenging to spectrally engineer a microcomb system to align a comb mode with an atomic clock transition with a sufficient signal-to-noise ratio. Here we adopt a Vernier dual-microcomb scheme for optical frequency division of a stabilized ultranarrow-linewidth continuous-wave laser at 871 nm to an ~235 MHz output frequency. This scheme enables shifting an ultrahigh-frequency (~100 GHz) carrier-envelope offset beat down to frequencies where detection is possible and simultaneously placing a comb line close to the 871 nm laser—tuned so that, if frequency doubled, it would fall close to the clock transition in171Yb+. Our dual-comb system can potentially combine with an integrated ion trap towards future chip-scale optical atomic clocks.
more »
« less
- Award ID(s):
- 2323752
- PAR ID:
- 10635091
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Nature Photonics
- Volume:
- 19
- Issue:
- 4
- ISSN:
- 1749-4885
- Page Range / eLocation ID:
- 400 to 406
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Microresonator solitons are critical to miniaturize optical frequency combs to chip scale and have the potential to revolutionize spectroscopy, metrology and timing. With the reduction of resonator diameter, high repetition rates up to 1 THz become possible, and they are advantageous to wavelength multiplexing, coherent sampling, and self-referencing. However, the detection of comb repetition rate, the precursor to all comb-based applications, becomes challenging at these repetition rates due to the limited bandwidth of photodiodes and electronics. Here, we report a dual-comb Vernier frequency division method to vastly reduce the required electrical bandwidth. Free-running 216 GHz “Vernier” solitons sample and divide the main soliton’s repetition frequency from 197 GHz to 995 MHz through electrical processing of a pair of low frequency dual-comb beat notes. Our demonstration relaxes the instrumentation requirement for microcomb repetition rate detection, and could be applied for optical clocks, optical frequency division, and microwave photonics.more » « less
-
Abstract The advancement of microcomb sources, which serve as a versatile and powerful platform for various time–frequency measurements, have spurred widespread interest across disciplines. Their uses span coherent optical and microwave communications, atomic clocks, high-precision LiDARs, spectrometers, and frequency synthesizers. Recent breakthroughs in fabricating optical micro-cavities, along with the excitation and control of microcombs, have broadened their applications, bridging the gap between physical exploration and practical engineering systems. These developments pave the way for pioneering approaches in both classical and quantum information sciences. In this review article, we conduct a thorough examination of the latest strategies related to microcombs, their enhancement and functionalization schemes, and cutting-edge applications that cover signal generation, data transmission, quantum analysis, and information gathering, processing and computation. Additionally, we provide in-depth evaluations of microcomb-based methodologies tailored for a variety of applications. To conclude, we consider the current state of research and suggest a prospective roadmap that could transition microcomb technology from laboratory settings to broader real-world applications.more » « less
-
Abstract Soliton microcombs are a promising new approach for photonic-based microwave signal synthesis. To date, however, the tuning rate has been limited in microcombs. Here, we demonstrate the first microwave-rate soliton microcomb whose repetition rate can be tuned at a high speed. By integrating an electro-optic modulation element into a lithium niobate comb microresonator, a modulation bandwidth up to 75 MHz and a continuous frequency modulation rate up to 5.0 × 1014Hz/s are achieved, several orders-of-magnitude faster than existing microcomb technology. The device offers a significant bandwidth of up to tens of gigahertz for locking the repetition rate to an external microwave reference, enabling both direct injection locking and feedback locking to the comb resonator itself without involving external modulation. These features are especially useful for disciplining an optical voltage-controlled oscillator to a long-term reference and the demonstrated fast repetition rate control is expected to have a profound impact on all applications of frequency combs.more » « less
-
Abstract Optical microcomb underpins a wide range of applications from communication, metrology, to sensing. Although extensively explored in recent years, challenges remain in key aspects of microcomb such as complex soliton initialization, low power efficiency, and limited comb reconfigurability. Here we present an on-chip microcomb laser to address these key challenges. Realized with integration between III and V gain chip and a thin-film lithium niobate (TFLN) photonic integrated circuit (PIC), the laser directly emits mode-locked microcomb on demand with robust turnkey operation inherently built in, with individual comb linewidth down to 600 Hz, whole-comb frequency tuning rate exceeding 2.4 × 1017 Hz/s, and 100% utilization of optical power fully contributing to comb generation. The demonstrated approach unifies architecture and operation simplicity, electro-optic reconfigurability, high-speed tunability, and multifunctional capability enabled by TFLN PIC, opening up a great avenue towards on-demand generation of mode-locked microcomb that is of great potential for broad applications.more » « less
An official website of the United States government
