skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: Electrically empowered microcomb laser
Abstract Optical microcomb underpins a wide range of applications from communication, metrology, to sensing. Although extensively explored in recent years, challenges remain in key aspects of microcomb such as complex soliton initialization, low power efficiency, and limited comb reconfigurability. Here we present an on-chip microcomb laser to address these key challenges. Realized with integration between III and V gain chip and a thin-film lithium niobate (TFLN) photonic integrated circuit (PIC), the laser directly emits mode-locked microcomb on demand with robust turnkey operation inherently built in, with individual comb linewidth down to 600 Hz, whole-comb frequency tuning rate exceeding 2.4 × 1017 Hz/s, and 100% utilization of optical power fully contributing to comb generation. The demonstrated approach unifies architecture and operation simplicity, electro-optic reconfigurability, high-speed tunability, and multifunctional capability enabled by TFLN PIC, opening up a great avenue towards on-demand generation of mode-locked microcomb that is of great potential for broad applications.  more » « less
Award ID(s):
1719875
PAR ID:
10548669
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Nature Communications
Volume:
15
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Kerr microcombs have drawn substantial interest as mass-manufacturable, compact alternatives to bulk frequency combs. This could enable the deployment of many comb-reliant applications previously confined to laboratories. Particularly enticing is the prospect of microcombs performing optical frequency division in compact optical atomic clocks. Unfortunately, it is difficult to meet the self-referencing requirement of microcombs in these systems owing to the approximately terahertz repetition rates typically required for octave-spanning comb generation. In addition, it is challenging to spectrally engineer a microcomb system to align a comb mode with an atomic clock transition with a sufficient signal-to-noise ratio. Here we adopt a Vernier dual-microcomb scheme for optical frequency division of a stabilized ultranarrow-linewidth continuous-wave laser at 871 nm to an ~235 MHz output frequency. This scheme enables shifting an ultrahigh-frequency (~100 GHz) carrier-envelope offset beat down to frequencies where detection is possible and simultaneously placing a comb line close to the 871 nm laser—tuned so that, if frequency doubled, it would fall close to the clock transition in171Yb+. Our dual-comb system can potentially combine with an integrated ion trap towards future chip-scale optical atomic clocks. 
    more » « less
  2. Abstract A terahertz (THz) frequency comb capable of high-resolution measurement will significantly advance THz technology application in spectroscopy, metrology and sensing. The recently developed cryogenic-cooled THz quantum cascade laser (QCL) comb has exhibited great potentials with high power and broadband spectrum. Here, we report a room temperature THz harmonic frequency comb in 2.2 to 3.3 THz based on difference-frequency generation from a mid-IR QCL. The THz comb is intracavity generated via down-converting a mid-IR comb with an integrated mid-IR single mode based on distributed-feedback grating without using external optical elements. The grating Bragg wavelength is largely detuned from the gain peak to suppress the grating dispersion and support the comb operation in the high gain spectral range. Multiheterodyne spectroscopy with multiple equally spaced lines by beating it with a reference Fabry-Pérot comb confirms the THz comb operation. This type of THz comb will find applications to room temperature chip-based THz spectroscopy. 
    more » « less
  3. Abstract Dissipative Kerr soliton (DKS) microcomb has emerged as an enabling technology that revolutionizes a wide range of applications in both basic science and technological innovation. Reliable turnkey operation with sub-optical-cycle and sub-femtosecond timing jitter is key to the success of many intriguing microcomb applications at the intersection of ultrafast optics and microwave electronics. Here we propose an approach and demonstrate the first turnkey Brillouin-DKS frequency comb to the best of our knowledge. Our microresonator-filtered laser design offers essential benefits, including phase insensitivity, self-healing capability, deterministic selection of the DKS state, and access to the ultralow noise comb state. The demonstrated turnkey Brillouin-DKS frequency comb achieves a fundamental comb linewidth of 100 mHz and DKS timing jitter of 1 femtosecond for averaging times up to 56 μs. The approach is universal and generalizable to various device platforms for user-friendly and field-deployable comb devices. 
    more » « less
  4. Abstract Surface acoustic waves (SAWs) have shown great potential for developing sensors for structural health monitoring (SHM) and lab‐on‐a‐chip (LOC) applications. Existing SAW sensors mainly rely on measuring the frequency shifts of high‐frequency (e.g., >0.1 GHz) resonance peaks. This study presents frequency‐locked wireless multifunctional SAW sensors that enable multiple wireless sensing functions, including strain sensing, temperature measurement, water presence detection, and vibration sensing. These sensors leverage SAW resonators on piezoelectric chips, inductive coupling‐based wireless power transmission, and, particularly, a frequency‐locked wireless sensing mechanism that works at low frequencies (e.g., <0.1 GHz). This mechanism locks the input frequency on the slope of a sensor's reflection spectrum and monitors the reflection signal's amplitude change induced by the changes of sensing parameters. The proof‐of‐concept experiments show that these wireless sensors can operate in a low‐power active mode for on‐demand wireless strain measurement, temperature sensing, and water presence detection. Moreover, these sensors can operate in a power‐free passive mode for vibration sensing, with results that agree well with laser vibrometer measurements. It is anticipated that the designs and mechanisms of the frequency‐locked wireless SAW sensors will inspire researchers to develop future wireless multifunctional sensors for SHM and LOC applications. 
    more » « less
  5. Armani, Andrea M.; Kudryashov, Alexis V.; Ilchenko, Vladimir S.; Sheldakova, Julia V. (Ed.)
    Optical microresonators possessing Kerr-type nonlinearity have emerged over the past decade as reliable and versatile sources of optical frequency combs, with varied applications including in the generation of low-phasenoise radio frequency (RF) signals, small-footprint precision timekeeping, and LiDAR. One of the key parameters affecting Kerr microcomb generation in different wavelength ranges is cavity modal dispersion. Dispersion effects such as avoided mode crossings (AMCs) have been shown to greatly limit mode-locked microcomb generation, especially when pumping in close proximity to such disruptions. We present numerical modeling and experimental evidence demonstrating that using an auxiliary laser pump can suppress the detrimental impact of near-pump AMCs. We also report, for the first time to our knowledge, the possibility of the breaking of characteristic soliton steps into two stable branches corresponding to different stable pulse trains arising from the interplay of dichromatic pumping and AMCs. These findings bear significance, particularly for the generation of frequency combs in larger resonators or at smaller wavelengths, such as the visible range, where the cavities become overmoded. 
    more » « less