Rankings and scores are two common data types used by judges to express preferences and/or perceptions of quality in a collection of objects. Numerous models exist to study data of each type separately, but no unified statistical model captures both data types simultaneously without first performing data conversion. We propose the Mallows-Binomial model to close this gap, which combines a Mallows $$\phi$$ ranking model with Binomial score models through shared parameters that quantify object quality, a consensus ranking, and the level of consensus among judges. We propose an efficient tree-search algorithm to calculate the exact MLE of model parameters, study statistical properties of the model both analytically and through simulation, and apply our model to real data from an instance of grant panel review that collected both scores and partial rankings. Furthermore, we demonstrate how model outputs can be used to rank objects with confidence. The proposed model is shown to sensibly combine information from both scores and rankings to quantify object quality and measure consensus with appropriate levels of statistical uncertainty.
more »
« less
This content will become publicly available on June 16, 2026
Bayesian Rank-Clustering
Abstract This article proposes a new statistical model to infer interpretable population-level preferences from ordinal comparison data. Such data is ubiquitous, e.g., ranked choice votes, top-10 movie lists, and pairwise sports outcomes. Traditional statistical inference on ordinal comparison data results in an overall ranking of objects, e.g., from best to worst, with each object having a unique rank. However, the ranks of some objects may not be statistically distinguishable. This could happen due to insufficient data or to the true underlying object qualities being equal. Because uncertainty communication in estimates of overall rankings is notoriously difficult, we take a different approach and allow groups of objects to have equal ranks or berank-clusteredin our model. Existing models related to rank-clustering are limited by their inability to handle a variety of ordinal data types, to quantify uncertainty, or by the need to pre-specify the number and size of potential rank-clusters. We solve these limitations through our proposed BayesianRank-Clustered Bradley–Terry–Luce (BTL)model. We accommodate rank-clustering via parameter fusion by imposing a novel spike-and-slab prior on object-specific worth parameters in the BTL family of distributions for ordinal comparisons. We demonstrate rank-clustering on simulated and real datasets in surveys, elections, and sports analytics.
more »
« less
- Award ID(s):
- 2019901
- PAR ID:
- 10635099
- Publisher / Repository:
- Cambridge University Press
- Date Published:
- Journal Name:
- Psychometrika
- ISSN:
- 0033-3123
- Page Range / eLocation ID:
- 1 to 28
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The problem of rank aggregation from pairwise and multiway comparisons has a wide range of implications, ranging from recommendation systems to sports rankings to social choice. Some of the most popular algorithms for this problem come from the class of spectral ranking algorithms; these include the rank centrality (RC) algorithm for pairwise comparisons, which returns consistent estimates under the Bradley-Terry-Luce (BTL) model for pairwise comparisons (Negahban et al., 2017), and its generalization, the Luce spectral ranking (LSR) algorithm, which returns consistent estimates under the more general multinomial logit (MNL) model for multiway comparisons (Maystre & Grossglauser, 2015). In this paper, we design a provably faster spectral ranking algorithm, which we call accelerated spectral ranking (ASR), that is also consistent under the MNL/BTL models. Our accelerated algorithm is achieved by designing a random walk that has a faster mixing time than the random walks associated with previous algorithms. In addition to a faster algorithm, our results yield improved sample complexity bounds for recovery of the MNL/BTL parameters: to the best of our knowledge, we give the first general sample complexity bounds for recovering the parameters of the MNL model from multiway comparisons under any (connected) comparison graph (and improve significantly over previous bounds for the BTL model for pairwise comparisons). We also give a message-passing interpretation of our algorithm, which suggests a decentralized distributed implementation. Our experiments on several real-world and synthetic datasets confirm that our new ASR algorithm is indeed orders of magnitude faster than existing algorithms.more » « less
-
The problem of rank aggregation from pairwise and multiway comparisons has a wide range of implications, ranging from recommendation systems to sports rankings to social choice. Some of the most popular algorithms for this problem come from the class of spectral ranking algorithms; these include the rank centrality (RC) algorithm for pairwise comparisons, which returns consistent estimates under the Bradley-Terry-Luce (BTL) model for pairwise comparisons (Negahban et al., 2017), and its generalization, the Luce spectral ranking (LSR) algorithm, which returns consistent estimates under the more general multinomial logit (MNL) model for multiway comparisons (Maystre & Grossglauser, 2015). In this paper, we design a provably faster spectral ranking algorithm, which we call accelerated spectral ranking (ASR), that is also consistent under the MNL/BTL models. Our accelerated algorithm is achieved by designing a random walk that has a faster mixing time than the random walks associated with previous algorithms. In addition to a faster algorithm, our results yield improved sample complexity bounds for recovery of the MNL/BTL parameters: to the best of our knowledge, we give the first general sample complexity bounds for recovering the parameters of the MNL model from multiway comparisons under any (connected) comparison graph (and improve significantly over previous bounds for the BTL model for pairwise comparisons). We also give a message-passing interpretation of our algorithm, which suggests a decentralized distributed implementation. Our experiments on several real-world and synthetic datasets confirm that our new ASR algorithm is indeed orders of magnitude faster than existing algorithms.more » « less
-
Abstract The Bradley–Terry–Luce (BTL) model is a benchmark model for pairwise comparisons between individuals. Despite recent progress on the first-order asymptotics of several popular procedures, the understanding of uncertainty quantification in the BTL model remains largely incomplete, especially when the underlying comparison graph is sparse. In this paper, we fill this gap by focusing on two estimators that have received much recent attention: the maximum likelihood estimator (MLE) and the spectral estimator. Using a unified proof strategy, we derive sharp and uniform non-asymptotic expansions for both estimators in the sparsest possible regime (up to some poly-logarithmic factors) of the underlying comparison graph. These expansions allow us to obtain: (i) finite-dimensional central limit theorems for both estimators; (ii) construction of confidence intervals for individual ranks; (iii) optimal constant of $$\ell _2$$ estimation, which is achieved by the MLE but not by the spectral estimator. Our proof is based on a self-consistent equation of the second-order remainder vector and a novel leave-two-out analysis.more » « less
-
null (Ed.)Commonly used metrics for evaluation of object detection systems (precision, recall, mAP) do not give complete information about their suitability of use in safety-critical tasks, like obstacle detection for collision avoidance in Autonomous Vehicles (AV). This work introduces the Risk Ranked Recall ($R^3$) metrics for object detection systems. The $R^3$ metrics categorize objects within three ranks. Ranks are assigned based on an objective cyber-physical model for the risk of collision. Recall is measured for each rankmore » « less
An official website of the United States government
