skip to main content


Title: Accelerated Spectral Ranking
The problem of rank aggregation from pairwise and multiway comparisons has a wide range of implications, ranging from recommendation systems to sports rankings to social choice. Some of the most popular algorithms for this problem come from the class of spectral ranking algorithms; these include the rank centrality (RC) algorithm for pairwise comparisons, which returns consistent estimates under the Bradley-Terry-Luce (BTL) model for pairwise comparisons (Negahban et al., 2017), and its generalization, the Luce spectral ranking (LSR) algorithm, which returns consistent estimates under the more general multinomial logit (MNL) model for multiway comparisons (Maystre & Grossglauser, 2015). In this paper, we design a provably faster spectral ranking algorithm, which we call accelerated spectral ranking (ASR), that is also consistent under the MNL/BTL models. Our accelerated algorithm is achieved by designing a random walk that has a faster mixing time than the random walks associated with previous algorithms. In addition to a faster algorithm, our results yield improved sample complexity bounds for recovery of the MNL/BTL parameters: to the best of our knowledge, we give the first general sample complexity bounds for recovering the parameters of the MNL model from multiway comparisons under any (connected) comparison graph (and improve significantly over previous bounds for the BTL model for pairwise comparisons). We also give a message-passing interpretation of our algorithm, which suggests a decentralized distributed implementation. Our experiments on several real-world and synthetic datasets confirm that our new ASR algorithm is indeed orders of magnitude faster than existing algorithms.  more » « less
Award ID(s):
1717290
NSF-PAR ID:
10309476
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 35th International Conference on Machine Learning
Volume:
80
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The problem of rank aggregation from pairwise and multiway comparisons has a wide range of implications, ranging from recommendation systems to sports rankings to social choice. Some of the most popular algorithms for this problem come from the class of spectral ranking algorithms; these include the rank centrality (RC) algorithm for pairwise comparisons, which returns consistent estimates under the Bradley-Terry-Luce (BTL) model for pairwise comparisons (Negahban et al., 2017), and its generalization, the Luce spectral ranking (LSR) algorithm, which returns consistent estimates under the more general multinomial logit (MNL) model for multiway comparisons (Maystre & Grossglauser, 2015). In this paper, we design a provably faster spectral ranking algorithm, which we call accelerated spectral ranking (ASR), that is also consistent under the MNL/BTL models. Our accelerated algorithm is achieved by designing a random walk that has a faster mixing time than the random walks associated with previous algorithms. In addition to a faster algorithm, our results yield improved sample complexity bounds for recovery of the MNL/BTL parameters: to the best of our knowledge, we give the first general sample complexity bounds for recovering the parameters of the MNL model from multiway comparisons under any (connected) comparison graph (and improve significantly over previous bounds for the BTL model for pairwise comparisons). We also give a message-passing interpretation of our algorithm, which suggests a decentralized distributed implementation. Our experiments on several real-world and synthetic datasets confirm that our new ASR algorithm is indeed orders of magnitude faster than existing algorithms. 
    more » « less
  2. Rank aggregation from pairwise preferences has widespread applications in recommendation systems and information retrieval. Given the enormous economic and societal impact of these applications, and the consequent incentives for malicious players to manipulate ranking outcomes in their favor, an important challenge is to make rank aggregation algorithms robust to adversarial manipulations in data. In this paper, we initiate the study of robustness in rank aggregation under the popular Bradley-Terry-Luce (BTL) model for pairwise comparisons. We consider a setting where pairwise comparisons are initially generated according to a BTL model, but a fraction of these comparisons are corrupted by an adversary prior to being reported to us. We consider a strong contamination model, where an adversary having complete knowledge of the initial truthful data and the underlying true BTL parameters, can subsequently corrupt the truthful data by inserting, deleting, or changing data points. The goal is to estimate the true score/weight of each item under the BTL model, even in the presence of these corruptions. We characterize the extent of adversarial corruption under which the true BTL parameters are uniquely identifiable. We also provide a novel pruning algorithm that provably cleans the data of adversarial corruption under reasonable conditions on data generation and corruption. We corroborate our theory with experiments on both synthetic as well as real data showing that previous algorithms are vulnerable to even small amounts of corruption, whereas our algorithm can clean a reasonably high amount of corruption. 
    more » « less
  3. Krause, Andreas and (Ed.)
    We provide a theoretical framework for Reinforcement Learning with Human Feedback (RLHF). We show that when the underlying true reward is linear, under both Bradley-Terry-Luce (BTL) model (pairwise comparison) and Plackett-Luce (PL) model ($K$-wise comparison), MLE converges under certain semi-norm for the family of linear reward. On the other hand, when training a policy based on the learned reward model, we show that MLE fails while a pessimistic MLE provides policies with good performance under certain coverage assumption. We also show that under the PL model, both the true MLE and a different MLE which splits the $K$-wise comparison into pairwise comparisons converge, while the true MLE is asymptotically more efficient. Our results validate the empirical success of the existing RLHF algorithms, and provide new insights for algorithm design. Our analysis can also be applied for the problem of online RLHF and inverse reinforcement learning. 
    more » « less
  4. A number of applications require two-sample testing on ranked preference data. For instance, in crowdsourcing, there is a long-standing question of whether pairwise comparison data provided by people is distributed similar to ratings-converted-to-comparisons. Other examples include sports data analysis and peer grading. In this paper, we design two-sample tests for pairwise comparison data and ranking data. For our two-sample test for pairwise comparison data, we establish an upper bound on the sample complexity required to correctly distinguish between the distributions of the two sets of samples. Our test requires essentially no assumptions on the distributions. We then prove complementary lower bounds showing that our results are tight (in the minimax sense) up to constant factors. We investigate the role of modeling assumptions by proving lower bounds for a range of pairwise comparison models (WST, MST, SST, parameter-based such as BTL and Thurstone). We also provide testing algorithms and associated sample complexity bounds for the problem of two-sample testing with partial (or total) ranking data. Furthermore, we empirically evaluate our results via extensive simulations as well as two real-world datasets consisting of pairwise comparisons. By applying our two-sample test on real-world pairwise comparison data, we conclude that ratings and rankings provided by people are indeed distributed differently. On the other hand, our test recognizes no significant difference in the relative performance of European football teams across two seasons. Finally, we apply our two-sample test on a real-world partial and total ranking dataset and find a statistically significant difference in Sushi preferences across demographic divisions based on gender, age and region of residence. 
    more » « less
  5. Abstract

    The Bradley–Terry–Luce (BTL) model is a benchmark model for pairwise comparisons between individuals. Despite recent progress on the first-order asymptotics of several popular procedures, the understanding of uncertainty quantification in the BTL model remains largely incomplete, especially when the underlying comparison graph is sparse. In this paper, we fill this gap by focusing on two estimators that have received much recent attention: the maximum likelihood estimator (MLE) and the spectral estimator. Using a unified proof strategy, we derive sharp and uniform non-asymptotic expansions for both estimators in the sparsest possible regime (up to some poly-logarithmic factors) of the underlying comparison graph. These expansions allow us to obtain: (i) finite-dimensional central limit theorems for both estimators; (ii) construction of confidence intervals for individual ranks; (iii) optimal constant of $\ell _2$ estimation, which is achieved by the MLE but not by the spectral estimator. Our proof is based on a self-consistent equation of the second-order remainder vector and a novel leave-two-out analysis.

     
    more » « less