skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1749252

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Kujala, Katharina (Ed.)
    ABSTRACT The decomposition of soil organic carbon within tropical peatlands is influenced by the functional composition of the microbial community. In this study, building upon our previous work, we recovered a total of 28 metagenome-assembled genomes (MAGs) classified as Bathyarchaeia from the tropical peatlands of the Pastaza-Marañón Foreland Basin (PMFB) in the Amazon. Using phylogenomic analyses, we identified nine genus-level clades to have representatives from the PMFB, with four forming a putative novel family (“CandidatusPaludivitaceae”) endemic to peatlands. We focus on theCa. Paludivitaceae MAGs due to the novelty of this group and the limited understanding of their role within tropical peatlands. Functional analysis of these MAGs reveals that this putative family comprises facultative anaerobes, possessing the genetic potential for oxygen, sulfide, or nitrogen oxidation. This metabolic versatility can be coupled to the fermentation of acetoin, propanol, or proline. The other clades outsideCa. Paludivitaceae are putatively capable of acetogenesis andde novoamino acid biosynthesis and encode a high amount of Fe3+transporters. Crucially, theCa. Paludivitaceae are predicted to be carboxydotrophic, capable of utilizing CO for energy generation or biomass production. Through this metabolism, they could detoxify the environment from CO, a byproduct of methanogenesis, or produce methanogenic substrates like CO2and H2. Overall, our results show the complex metabolism and various lineages of Bathyarchaeia within tropical peatlands pointing to the need to further evaluate their role in these ecosystems. IMPORTANCEWith the expansion of theCandidatusPaludivitaceae family by the assembly of 28 new metagenome assembled genomes, this study provides novel insights into their metabolic diversity and ecological significance in peatland ecosystems. From a comprehensive phylogenic and functional analysis, we have elucidated their putative unique facultative anaerobic capabilities and CO detoxification potential. This research highlights their crucial role in carbon cycling and greenhouse gas regulation. These findings are essential for resolving the microbial processes affecting peat soil stability, offering new perspectives on the ecological roles of previously underexplored and underrepresented archaeal populations. 
    more » « less
    Free, publicly-accessible full text available December 5, 2025
  2. Abstract BackgroundExploring metagenomic contigs and “binning” them into metagenome-assembled genomes (MAGs) are essential for the delineation of functional and evolutionary guilds within microbial communities. Despite the advances in automated binning algorithms, their capabilities in recovering MAGs with accuracy and biological relevance are so far limited. Researchers often find that human involvement is necessary to achieve representative binning results. This manual process however is expertise demanding and labor intensive, and it deserves to be supported by software infrastructure. ResultsWe present BinaRena, a comprehensive and versatile graphic interface dedicated to aiding human operators to explore metagenome assemblies via customizable visualization and to associate contigs with bins. Contigs are rendered as an interactive scatter plot based on various data types, including sequence metrics, coverage profiles, taxonomic assignments, and functional annotations. Various contig-level operations are permitted, such as selection, masking, highlighting, focusing, and searching. Binning plans can be conveniently edited, inspected, and compared visually or using metrics including silhouette coefficient and adjusted Rand index. Completeness and contamination of user-selected contigs can be calculated in real time.In demonstration of BinaRena’s usability, we show that it facilitated biological pattern discovery, hypothesis generation, and bin refinement in a complex tropical peatland metagenome. It enabled isolation of pathogenic genomes within closely related populations from the gut microbiota of diarrheal human subjects. It significantly improved overall binning quality after curating results of automated binners using a simulated marine dataset. ConclusionsBinaRena is an installation-free, dependency-free, client-end web application that operates directly in any modern web browser, facilitating ease of deployment and accessibility for researchers of all skill levels. The program is hosted athttps://github.com/qiyunlab/binarena, together with documentation, tutorials, example data, and a live demo. It effectively supports human researchers in intuitive interpretation and fine tuning of metagenomic data. 
    more » « less
  3. Abstract Historically neglected by microbial ecologists, soil viruses are now thought to be critical to global biogeochemical cycles. However, our understanding of their global distribution, activities and interactions with the soil microbiome remains limited. Here we present the Global Soil Virus Atlas, a comprehensive dataset compiled from 2,953 previously sequenced soil metagenomes and composed of 616,935 uncultivated viral genomes and 38,508 unique viral operational taxonomic units. Rarefaction curves from the Global Soil Virus Atlas indicate that most soil viral diversity remains unexplored, further underscored by high spatial turnover and low rates of shared viral operational taxonomic units across samples. By examining genes associated with biogeochemical functions, we also demonstrate the viral potential to impact soil carbon and nutrient cycling. This study represents an extensive characterization of soil viral diversity and provides a foundation for developing testable hypotheses regarding the role of the virosphere in the soil microbiome and global biogeochemistry. 
    more » « less
  4. Abstract The Pastaza‐Marañón Foreland Basin (PMFB) holds the most extensive tropical peatland area in South America. PMFB peatlands store ~7.07 Gt of organic carbon interacting with multiple microbial heterotrophic, methanogenic, and other aerobic/anaerobic respirations. Little is understood about the contribution of distinct microbial community members inhabiting tropical peatlands. Here, we studied the metagenomes of three geochemically distinct peatlands spanning minerotrophic, mixed, and ombrotrophic conditions. Using gene‐ and genome‐centric approaches, we evaluate the functional potential of the underlying microbial communities. Abundance analyses show significant differences in C, N, P, and S acquisition genes. Furthermore, community interactions mediated by toxin–antitoxin and CRISPR‐Cas systems were enriched in oligotrophic soils, suggesting that non‐metabolic interactions may exert additional controls in low‐nutrient environments. Additionally, we reconstructed 519 metagenome‐assembled genomes spanning 28 phyla. Our analyses detail key differences across the geochemical gradient in the predicted microbial populations involved in degradation of organic matter, and the cycling of N and S. Notably, we observed differences in the nitric oxide (NO) reduction strategies between sites with high and low N2O fluxes and found phyla putatively capable of both NO and sulfate reduction. Our findings detail how gene abundances and microbial populations are influenced by geochemical differences in tropical peatlands. 
    more » « less
  5. Loss of peat through increased burning will have major impacts on the global carbon cycle. In a normal hydrological state, the risk of fire propagation is largely controlled by peat bulk density and moisture content. However, where humans have interfered with the moisture status of peat either via drainage, or indirectly via climate change, we hypothesise that its botanical composition will become important to flammability, such that peats from different latitudes might have different compositionally-driven susceptibility to ignition. We use pyrolysis combustion flow calorimetry to determine the temperature of maximum thermal decomposition (Tmax) of peats from different latitudes, and couple this to a botanical composition analysis. We find that tropical peat has higherTmaxthan other regions, likely on account of its higher wood content which appears to convey a greater resistance to ignition. This resistance also increases with depth, which means that loss of surface peat in tropical regions may lead to a reduction in the subsequent ignitability of deeper peat layers as they are exposed, potentially resulting in a negative feedback on increased fire occurrence and severity. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  6. Surveying bacterial and archaeal microbial communities in host and environmental studies requires the collection and storage of samples. Many studies are conducted in distant locations challenging these prerequisites. The use of preserving buffers is an important alternative when lacking access to cryopreservation, however, its effectivity for samples with challenging chemistry or samples that provide opportunities for fast bacterial or archaeal growth upon exposure to an aerobic environment, like peat samples, requires methodological assessment. Here, in combination with an identified optimal DNA extraction kit for peat soil samples, we test the application of several commercial and a homemade preservation buffer and make recommendations on the method that can most effectively preserve a microbiome reflective of the original state. In treatments with a non-optimal buffer or in the absence, we observed notable community shifts beginning as early as three days post-preservation lowering diversity and community evenness, with growth-driven artifacts from a few specific phyla. However other buffers retain a very close composition relative to the original state, and we described several metrics to understand some variation across them. Due to the chemical effects of preservation buffers, it is critical to test their compatibility and reliability to preserve the original bacterial and archaeal community in different environments. 
    more » « less
  7. Tropical peatlands are highly vulnerable to anthropogenic alterations. In Costa Rica, riverine peatlands are understudied, and most are not included in protected areas. This study aims to generating information useful to assess the anthropogenic pressure in a riverine peatland in Los Robles Sector (LRS) of Medio Queso Wetland (MQW) complex. Evaluations of impacts of fires on vegetation and surface peat chemistry, and the post-2021 fire, makeup of dominant vegetation changes with the Cyperaceae species Scleria melaleuca replacing Eleocharis interstincta as the dominant species are presented. The topsoil (0–20 cm) total C content was quantified as lower than 300 g kg−1 with no significant statistical differences in total C and N content between soil shortly after the fires or two years later. The species E. interstincta is observed to promote higher C stability during the dry season, and has a more recalcitrant composition of the root system compared to the post 2021-fire dominant S. melaleuca. To reduce the impact on C accumulation, measures to prevent grazing-originated fires, especially when the water table is low, are urgent. Hence, this work aims at proving information that can be a baseline for impacts assessment and to inform conservation measures and policies. 
    more » « less
  8. Metagenomes encode an enormous diversity of proteins, reflecting a multiplicity of functions and activities. Exploration of this vast sequence space has been limited to a comparative analysis against reference microbial genomes and protein families derived from those genomes. Here, to examine the scale of yet untapped functional diversity beyond what is currently possible through the lens of reference genomes, we develop a computational approach to generate reference-free protein families from the sequence space in metagenomes. We analyze 26,931 metagenomes and identify 1.17 billion protein sequences longer than 35 amino acids with no similarity to any sequences from 102,491 reference genomes or the Pfam database. Using massively parallel graph-based clustering, we group these proteins into 106,198 novel sequence clusters with more than 100 members, doubling the number of protein families obtained from the reference genomes clustered using the same approach. We annotate these families on the basis of their taxonomic, habitat, geographical, and gene neighborhood distributions and, where sufficient sequence diversity is available, predict protein three-dimensional models, revealing novel structures. Overall, our results uncover an enormously diverse functional space, highlighting the importance of further exploring the microbial functional dark matter. 
    more » « less