Abstract Organic solar cells (OSCs) are one of the most promising cost‐effective options for utilizing solar energy, and, while the field of OSCs has progressed rapidly in device performance in the past few years, the stability of nonfullerene OSCs has received less attention. Developing devices with both high performance and long‐term stability remains challenging, particularly if the material choice is restricted by roll‐to‐roll and benign solvent processing requirements and desirable mechanical durability. Building upon the ink (toluene:FTAZ:IT‐M) that broke the 10% benchmark when blade‐coated in air, a second donor material (PBDB‐T) is introduced to stabilize and enhance performance with power conversion efficiency over 13% while keeping toluene as the solvent. More importantly, the ternary OSCs exhibit excellent thermal stability and storage stability while retaining high ductility. The excellent performance and stability are mainly attributed to the inhibition of the crystallization of nonfullerene small‐molecular acceptors (SMAs) by introducing a stiff donor that also shows low miscibility with the nonfullerene SMA and a slightly higher highest occupied molecular orbital (HOMO) than the host polymer. The study indicates that improved stability and performance can be achieved in a synergistic way without significant embrittlement, which will accelerate the future development and application of nonfullerene OSCs. 
                        more » 
                        « less   
                    This content will become publicly available on July 1, 2026
                            
                            Advances in the Design and Discovery of Organic Semiconductors Aided by Machine Learning
                        
                    
    
            Organic semiconductors (OSCs) offer the capacity for distinctive and finely tuned electronic, optical, thermal, and mechanical properties, making them of interest across a range of energy generation and storage, sensor, lighting, display, and electronics applications. The pathway from molecular building block design to material, however, is complicated by complex synthesis– processing–structure–property–function relationships that are inherent to OSCs. The adoption of artificial intelligence (AI) tools, including the subset of AI referred to as machine learning (ML), into the materials design and discovery pipeline offers significant potential to overcome the multifaceted roadblocks along this pathway. Here, we review recent advances in the application of AI/ML for OSCs, with a focus on the development and use of ML. We present a brief primer on ML models and then highlight efforts wherein ML is used to predict molecular and material properties and discover new molecular building blocks and OSCs. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2323422
- PAR ID:
- 10635150
- Publisher / Repository:
- Annual Reviews
- Date Published:
- Journal Name:
- Annual Review of Materials Research
- Volume:
- 55
- Issue:
- 1
- ISSN:
- 1531-7331
- Page Range / eLocation ID:
- 285 to 306
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Metal additive manufacturing (AM) holds immense potential for developing advanced structural alloys. However, the complex, heterogeneous nature of AM-produced materials presents significant challenges to traditional material characterization and optimization methods. This review explores the integration of artificial intelligence (AI) and machine learning (ML) with high-throughput material characterization protocols to rapidly establish the process–structure–property (PSP) relationships critically needed to dramatically accelerate the development of metal AM processes. Combinatorial high-throughput evaluations, including rapid material synthesis and nonstandard high-throughput testing protocols, such as spherical indentation and small punch tests, are discussed for their capability to rapidly assess mechanical properties and establish PSP linkages. Furthermore, the review examines the role of AI and ML in optimizing AM processes, particularly through Bayesian optimization, which offers new avenues for efficient exploration of high-dimensional design spaces. The review envisions a future where AI- and ML-driven, autonomous AM development cycles significantly enhance material and process optimization.more » « less
- 
            Organic molecules and polymers have a broad range of applications in biomedical, chemical, and materials science fields. Traditional design approaches for organic molecules and polymers are mainly experimentally-driven, guided by experience, intuition, and conceptual insights. Though they have been successfully applied to discover many important materials, these methods are facing significant challenges due to the tremendous demand of new materials and vast design space of organic molecules and polymers. Accelerated and inverse materials design is an ideal solution to these challenges. With advancements in high-throughput computation, artificial intelligence (especially machining learning, ML), and the growth of materials databases, ML-assisted materials design is emerging as a promising tool to flourish breakthroughs in many areas of materials science and engineering. To date, using ML-assisted approaches, the quantitative structure property/activity relation for material property prediction can be established more accurately and efficiently. In addition, materials design can be revolutionized and accelerated much faster than ever, through ML-enabled molecular generation and inverse molecular design. In this perspective, we review the recent progresses in ML-guided design of organic molecules and polymers, highlight several successful examples, and examine future opportunities in biomedical, chemical, and materials science fields. We further discuss the relevant challenges to solve in order to fully realize the potential of ML-assisted materials design for organic molecules and polymers. In particular, this study summarizes publicly available materials databases, feature representations for organic molecules, open-source tools for feature generation, methods for molecular generation, and ML models for prediction of material properties, which serve as a tutorial for researchers who have little experience with ML before and want to apply ML for various applications. Last but not least, it draws insights into the current limitations of ML-guided design of organic molecules and polymers. We anticipate that ML-assisted materials design for organic molecules and polymers will be the driving force in the near future, to meet the tremendous demand of new materials with tailored properties in different fields.more » « less
- 
            Abstract Many of the greatest challenges facing society today likely have molecular solutions that await discovery. However, the process of identifying and manufacturing such molecules has remained slow and highly specialist dependent. Interfacing the fields of artificial intelligence (AI) and synthetic organic chemistry has the potential to powerfully address both limitations. The Molecule Maker Lab Institute (MMLI) brings together a team of chemists, engineers, and AI‐experts from the University of Illinois Urbana‐Champaign (UIUC), Pennsylvania State University, and the Rochester Institute of Technology, with the goal of accelerating the discovery, synthesis and manufacture of complex organic molecules. Advanced AI and machine learning (ML) methods are deployed in four key thrusts: (1) AI‐enabled synthesis planning, (2) AI‐enabled catalyst development, (3) AI‐enabled molecule manufacturing, and (4) AI‐enabled molecule discovery. The MMLI's new AI‐enabled synthesis platform integrates chemical and enzymatic catalysis with literature mining and ML to predict the best way to make new molecules with desirable biological and material properties. The MMLI is transforming chemical synthesis and generating use‐inspired AI advances. Simultaneously, the MMLI is also acting as a training ground for the next generation of scientists with combined expertise in chemistry and AI. Outreach efforts aimed toward high school students and the public are being used to show how AI‐enabled tools can help to make chemical synthesis accessible to nonexperts.more » « less
- 
            Abstract As a subfield of artificial intelligence (AI), machine learning (ML) has emerged as a versatile tool in accelerating catalytic materials discovery because of its ability to find complex patterns in high‐dimensional data. While the intricacy of cutting‐edge ML models, such as deep learning, makes them powerful, it also renders decision‐making processes challenging to explain. Recent advances in explainable AI technologies, which aim to make the inner workings of ML models understandable to humans, have considerably increased our capacity to gain insights from data. In this study, taking the oxygen reduction reaction (ORR) on {111}‐oriented Pt monolayer core–shell catalysts as an example, we show how the recently developed theory‐infused neural network (TinNet) algorithm enables a rapid search for optimal site motifs with the chemisorption energy of hydroxyl (OH) as a single descriptor, revealing the underlying physical factors that govern the variations in site reactivity. By exploring a broad design space of Pt monolayer core–shell alloys ( candidates) that were generated from thermodynamically stable bulk structures in existing material databases, we identified novel alloy systems along with previously known catalysts in the goldilocks zone of reactivity properties. SHAP (SHapley Additive exPlanations) analysis reveals the important role of adsorbate resonance energies that originate from ‐band interactions in chemical bonding at metal surfaces. Extracting physical insights into surface reactivity with explainable AI opens up new design pathways for optimizing catalytic performance beyond active sites.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
