Abstract The commercialization of nonfullerene organic solar cells (OSCs) critically relies on the response under typical operating conditions (for instance, temperature and humidity) and the ability of scale‐up. Despite the rapid increase in power conversion efficiency (PCE) of spin‐coated devices fabricated in a protective atmosphere, the efficiencies of printed nonfullerene OSC devices by blade coating are still lower than 6%. This slow progress significantly limits the practical printing of high‐performance nonfullerene OSCs. Here, a new and relatively stable nonfullerene combination is introduced by pairing the nonfluorinated acceptor IT‐M with the polymeric donor FTAZ. Over 12% efficiency can be achieved in spin‐coated FTAZ:IT‐M devices using a single halogen‐free solvent. More importantly, chlorine‐free, blade coating of FTAZ:IT‐M in air is able to yield a PCE of nearly 11% despite a humidity of ≈50%. X‐ray scattering results reveal that large π–π coherence length, high degree of face‐on orientation with respect to the substrate, and small domain spacing of ≈20 nm are closely correlated with such high device performance. The material system and approach yield the highest reported performance for nonfullerene OSC devices by a coating technique approximating scalable fabrication methods and hold great promise for the development of low‐cost, low‐toxicity, and high‐efficiency OSCs by high‐throughput production.
more »
« less
Highly Efficient, Stable, and Ductile Ternary Nonfullerene Organic Solar Cells from a Two‐Donor Polymer Blend
Abstract Organic solar cells (OSCs) are one of the most promising cost‐effective options for utilizing solar energy, and, while the field of OSCs has progressed rapidly in device performance in the past few years, the stability of nonfullerene OSCs has received less attention. Developing devices with both high performance and long‐term stability remains challenging, particularly if the material choice is restricted by roll‐to‐roll and benign solvent processing requirements and desirable mechanical durability. Building upon the ink (toluene:FTAZ:IT‐M) that broke the 10% benchmark when blade‐coated in air, a second donor material (PBDB‐T) is introduced to stabilize and enhance performance with power conversion efficiency over 13% while keeping toluene as the solvent. More importantly, the ternary OSCs exhibit excellent thermal stability and storage stability while retaining high ductility. The excellent performance and stability are mainly attributed to the inhibition of the crystallization of nonfullerene small‐molecular acceptors (SMAs) by introducing a stiff donor that also shows low miscibility with the nonfullerene SMA and a slightly higher highest occupied molecular orbital (HOMO) than the host polymer. The study indicates that improved stability and performance can be achieved in a synergistic way without significant embrittlement, which will accelerate the future development and application of nonfullerene OSCs.
more »
« less
- PAR ID:
- 10444416
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials
- Volume:
- 31
- Issue:
- 17
- ISSN:
- 0935-9648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Fluorinated molecule 2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4‐TCNQ) and its derivatives have been used in polymer:fullerene solar cells primarily as a dopant to optimize the electrical properties and device performance. However, the underlying mechanism and generality of how F4‐TCNQ affects device operation and possibly the morphology is poorly understood, particularly for emerging nonfullerene organic solar cells. In this work, the influence of F4‐TCNQ on the blend film morphology and photovoltaic performance of nonfullerene solar cells processed by a single halogen‐free solvent is systematically investigated using a set of morphological and electrical characterizations. In solar cells with a high‐performance polymer:small molecule blend FTAZ:IT‐M, F4‐TCNQ has a negligibly small effect on the molecular packing and surface characteristics, while it clearly affects the electronic properties and mean‐square composition variation of the bulk. In comparison to the control devices with an average power conversion efficiency (PCE) of 11.8%, inclusion of a trace amount of F4‐TCNQ in the active layer has improved device fill factor and current density, which has resulted into a PCE of 12.4%. Further increase in F4‐TCNQ content degrades device performance. This investigation aims at delineating the precise role of F4‐TCNQ in nonfullerene bulk heterojunction films, and thereby establishing a facile approach to fabricate highly optimized nonfullerene solar cells.more » « less
-
Abstract The development of nonfullerene acceptors has brought polymer solar cells into a new era. Maximizing the performance of nonfullerene solar cells needs appropriate polymer donors that match with the acceptors in both electrical and morphological properties. So far, the design rationales for polymer donors are mainly borrowed from fullerene‐based solar cells, which are not necessarily applicable to nonfullerene solar cells. In this work, the influence of side chain length of polymer donors based on a set of random terpolymers PTAZ‐TPD10‐Cnon the device performance of polymer solar cells is investigated with three different acceptor materials, i.e., a fullerene acceptor [70]PCBM, a polymer acceptor N2200, and a fused‐ring molecular acceptor ITIC. Shortening the side chains of polymer donors improves the device performance of [70]PCBM‐based devices, but deteriorates the N2200‐ and ITIC‐based devices. Morphology studies unveil that the miscibility between donor and acceptor in blend films depends on the side chain length of polymer donors. Upon shortening the side chains of the polymer donors, the miscibility between the donor and acceptor increases for the [70]PCBM‐based blends, but decreases for the N2200‐ and ITIC‐based blends. These findings provide new guidelines for the development of polymer donors to match with emerging nonfullerene acceptors.more » « less
-
We compared an indacenodithiophene(IDT)-based fused-ring electron acceptor IDIC1 with its counterpart IHIC1 in which the central benzene unit is replaced by a naphthalene unit, and investigated the effects of the benzene/naphthalene core on the optical and electronic properties as well as on the performance of organic solar cells (OSCs). Compared with benzene-cored IDIC1, naphthalene-cored IHIC1 shows a larger π-conjugation with stronger intermolecular π–π stacking. Relative to benzene-cored IDIC1, naphthalene-cored IHIC1 shows a higher lowest unoccupied molecular orbital energy level (IHIC1: −3.75 eV, IDIC1: −3.81 eV) and a higher electron mobility (IHIC1: 3.0 × 10 −4 cm 2 V −1 s −1 , IDIC1: 1.5 × 10 −4 cm 2 V −1 s −1 ). When paired with the polymer donor FTAZ that has matched energy levels and a complementary absorption spectrum, IHIC1-based OSCs show higher values of open-circuit voltage, short-circuit current density, fill factor and power conversion efficiency relative to those of the IDIC1-based control devices. These results demonstrate that extending benzene in IDT to naphthalene is a promising approach to upshift energy levels, enhance electron mobility, and finally achieve higher efficiency in nonfullerene acceptor-based OSCs.more » « less
-
ABSTRACT Bulk heterojunctions (BHJs) based on semiconducting electron–donor polymer and electron–acceptor fullerene have been extensively investigated as potential photoactive layers for organic solar cells (OSCs). In the experimental studies, poly‐(3‐hexyl‐thiophene) (P3HT) polymers are hardly monodisperse as the synthesis of highly monodisperse polymer mixture is a near impossible task to achieve. However, the majority of the computational efforts on P3HT: phenyl‐C61‐butyric acid methyl ester (P3HT:PCBM)‐based OSCs, a monodisperse P3HT is usually considered. Here, results from coarse‐grained molecular dynamics simulations of solvent evaporation and thermal annealing process of the BHJ are shared describing the effect of variability in molecular weight (also known as polydispersity) on the morphology of the active layer. Results affirm that polydispersity is beneficial for charge separation as the interfacial area is observed to increase with higher dispersity. Calculations of percolation and orientation tensors, on the other hand, reveal that a certain polydispersity index ranging between 1.05 and 1.10 should be maintained for optimal charge transport. Most importantly, these results point out that the consideration of polydispersity should be considered in computational studies of polymer‐based OSCs. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2019,57, 895–903more » « less
An official website of the United States government
