Sediments covering Arctic continental shelves are uniquely impacted by ice processes. Delivery of sediments is generally limited to the summer, when rivers are ice free, permafrost bluffs are thawing, and sea ice is undergoing its seasonal retreat. Once delivered to the coastal zone, sediments follow complex pathways to their final depocenters—for example, fluvial sediments may experience enhanced seaward advection in the spring due to routing under nearshore sea ice; during the open-water season, boundary-layer transport may be altered by strong stratification in the ocean due to ice melt; during the fall storm season, sediments may be entrained into sea ice through the production of anchor ice and frazil; and in the winter, large ice keels more than 20 m tall plow the seafloor (sometimes to seabed depths of 1–2 m), creating a type of physical mixing that dwarfs the decimeter-scale mixing from bioturbation observed in lower-latitude shelf systems. This review summarizes the work done on subtidal sediment dynamics over the last 50 years in Arctic shelf systems backed by soft-sediment coastlines and suggests directions for future sediment studies in a changing Arctic. Reduced sea ice, increased wave energy, and increased sediment supply from bluffs (and possibly rivers) will likely alter marine sediment dynamics in the Arctic now and into the future.
more »
« less
This content will become publicly available on July 1, 2026
Summertime Sediment Storage on the Alaskan Beaufort Shelf and Implications for Ice‐Sediment Rafting and Shelf Erosion
Abstract Arctic coastlines are known to be rapidly eroding, but the fate of this material in the coastal ocean (and the sedimentary dynamics of Arctic continental shelves in general) is less well‐constrained. This study used summertime mooring data from the Alaskan Beaufort Shelf to study sediment‐transport patterns which are dominated by waves and wind‐driven currents. Easterly wind events account for most of the seasonal sediment transport, and serve to focus sediment on the inner shelf. This is a key finding because it means that sediment is readily available for wave‐driven resuspension and sea‐ice entrainment during fall storms. Sediment‐ice entrainment has been previously implicated as a major mechanism for Arctic Shelf erosion—and so the summertime focusing of sediment observed in this study may actually serve to enhance shelf erosion rather than promote shelf sediment accumulation. In a pan‐Arctic context, the Alaskan Beaufort Shelf is somewhat similar to the Laptev Sea Shelf, where previous work has shown that sediment is also focused during the summer months (but for different reasons related to estuarine‐like circulation under the Laptev plume). The Alaskan Beaufort Shelf example contrasts with previous work on the Canadian Beaufort Shelf, where dominant winds from the opposite direction (northwest) likely promote strong seaward dispersal of sediment rather than inner‐shelf convergence. This study thus highlights the importance of understanding dominant wind patterns when considering seasonal and inter‐annual storage, transport, and erosion of sediments from Arctic continental shelves.
more »
« less
- PAR ID:
- 10635157
- Publisher / Repository:
- JGR-Oceans
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Oceans
- Volume:
- 130
- Issue:
- 7
- ISSN:
- 2169-9275
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract Ponds that form on sea ice can cause it to thin or break-up, which can promote calving from an adjacent ice shelf. Studies of sea ice ponds have predominantly focused on Arctic ponds formed by in situ melting/ponding. Our study documents another mechanism for the formation of sea ice ponds. Using Landsat 8 and Sentinel-2 images from the 2015–16 to 2018–19 austral summers, we analyze the evolution of sea ice ponds that form adjacent to the McMurdo Ice Shelf, Antarctica. We find that each summer, meltwater flows from the ice shelf onto the sea ice and forms large (up to 9 km 2 ) ponds. These ponds decrease the sea ice's albedo, thinning it. We suggest the added mass of runoff causes the ice to flex, potentially promoting sea-ice instability by the ice-shelf front. As surface melting on ice shelves increases, we suggest that ice-shelf surface hydrology will have a greater effect on sea-ice stability.more » « less
-
The Arctic Ocean has experienced significant sea ice loss over recent decades, shifting towards a thinner and more mobile seasonal ice regime. However, the impacts of these transformations on the upper ocean dynamics of the biologically productive Pacific Arctic continental shelves remain underexplored. Here, we quantified the summer upper mixed layer depth and analyzed its interannual to decadal evolution with sea ice and atmospheric forcing, using hydrographic observations and model reanalysis from 1996 to 2021. Before 2006, a shoaling summer mixed layer was associated with sea ice loss and surface warming. After 2007, however, the upper mixed layer reversed to a generally deepening trend due to markedly lengthened open water duration, enhanced wind-induced mixing, and reduced ice meltwater input. Our findings reveal a shift in the primary drivers of upper ocean dynamics, with surface buoyancy flux dominant initially, followed by a shift to wind forcing despite continued sea ice decline. These changes in upper ocean structure and forcing mechanisms may have substantial implications for the marine ecosystem, potentially contributing to unusual fall phytoplankton blooms and intensified ocean acidification observed in the past decademore » « less
-
Storm Dynamics Control Sedimentation and Shelf‐Bay‐Marsh Sediment Exchange Along the Louisiana CoastHurricanes can benefit wetland accretion by augmenting the delivery of mineral sediment, an essential process allowing marshes to offset submergence during rising sea levels. Using Hurricane Gustav (2008, Louisiana) as a control, we examined eight synthetic storms with varying characteristics (track, speed, intensity, size) to evaluate sediment exchange between the inner shelf and bay and bay‐to‐marsh interfaces. All storms showed net landward sediment exchange from the inner shelf to the bay to the marsh—storms with closer proximity, higher intensity, and slower forward speed positively correlated with net sediment exchange; storm size had little impact. Except for slow‐moving storms (½ speed of Gustav), our analyses suggest that most hurricane scenarios cause net bay erosion, because more sediment is conveyed to landward wetlands than is replenished from erosion of the inner shelf. Our results suggest that the ongoing deepening of the bay will likely worsen because of rising sea levelsmore » « less
-
This dataset contains ascii text files of latitude, longitude, and water depth data which were collected using a pole-mounted multibeam echosounder system from the R/V Ukpik in July-August, 2021. Dr. Emily Eidam was the team lead and Dan Duncan was the multibeam operator. The data were collected along discrete tracklines across Harrison Bay. The general study was seaward of the Colville Delta between Cape Halkett to the west and Oliktok Point to the east, with a maximum seaward extent to water depths of approximately 30 meters (m) (about half to three-quarters of the way across the shelf from the shoreline). The dataset also contains a netcdf file of bathymetric change which was computed as the difference between the combined 2021 and 2022 data contained in this archive and a 1950s dataset which was recently corrected and is publicly available through Zimmerman et al., 2022 (doi.org/10.1016/j.csr.2022.104745). The multibeam data provide information about a rich diversity of seabed features including large and small ice-keel scours, sand waves, strudel scour pits, and unusual scoured substrates. A detailed description of these datasets is provided in an in-preparation manuscript (Eidam et al., Seafloor sediments and morphologic features of Harrison Bay in the Alaskan Beaufort Sea). The bathymetric change data illustrates erosion of the inner and inner-middle shelf over the past ~70 years, including erosion of up to ~3 m near Cape Halkett and on the Colville Delta front. These changes are addressed in detail in Heath, 2024 (Oregon State University Master of Science Thesis, "Sedimentation and Erosion on an Arctic Continental Shelf: Harrison Bay and Colville River Delta, Alaska").more » « less
An official website of the United States government
