skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Water-column data from Harrison Bay, Alaska (summers 2021 and 2022)
This dataset includes water-column data collected from the Beaufort Shelf during the open-water seasons in 2020, 2021, and 2022. The 2020 data include water-column profiles (salinity, temperature, depth, turbidity, particle size distributions, particle volume concentrations, and uncorrected clorophyll-a) collected with an RBR CTD/Tu (conductivity, temperature, depth, turbidity) sensor and LISST sensor from R/V Sikuliaq and its workboat. Most sites were in the Harrison Bay region (north of the Colville Delta and Simpson Lagoon) and a few were located farther east. The 2021 and 2022 data include the same CTD/Tu and LISST data that were collected in 2020, but are focused in Harrison Bay and also include profiles of light intensity (photosynthetically active radiation) as well as ADCP (acoustic doppler current profile) profiles from a pole-mounted Nortek Signature 500 kilohertz (kHz) sensor. In 2021, additional data include filtration data (total suspended solids, suspended sediment concentrations, and organic fractions) from water samples and hi-resolution echosounder data from the Nortek ADCP. These data are being incorporated into publications about summertime water-column properties and sediment transport dynamics within Harrison Bay (Eidam et al., pending).  more » « less
Award ID(s):
2322276 1913195
PAR ID:
10635164
Author(s) / Creator(s):
Publisher / Repository:
NSF Arctic Data Center
Date Published:
Subject(s) / Keyword(s):
Salinity Temperature Depth Photosynthetically active radiation Chlorophyll-a Turbidity Total Suspended Solids Suspended Sediment Concentration Organic content Particle-size distribution Particle volume concentration CTD LISST Water samples ADCP
Format(s):
Medium: X Other: text/xml
Sponsoring Org:
National Science Foundation
More Like this
  1. This dataset includes vessel-based water-column profile and seabed data collected around Blossom Shoals, a shoal complex offshore of Icy Cape in northwestern Alaska (in the Chukchi Sea). Data were collected from the Research Vessel (R/V) Sikuliaq (offshore) and a companion workboat (inshore). Water-column profile data include salinity, temperature, depth, and turbidity data collected using a RBR Maestro CTD/Tu (conductivity, temperature, depth, turbidity) sensor package. Profile data also include median diameters and volumetric concentrations of suspended particles, where were collected using a Sequoia LISST200X (laser in situ scattering transmissometer). Seabed grab samples were collected from the Sikuliaq using a shipek grab sampler and from the workboat using a hand-operated mini van veen grab sampler. Samplers were bagged and returned chilled to the lab for particle-size analyses in an Escitec Bettersizer S3Plus laser diffraction sensor. Sediments were not treated for organics due to generally low organic contents. Samples contained primarily sand except for a few isolated locations where mud was found. Data were collected in November 2019 during the fall freezeup season when pancake ice were beginning to form. Data were also collected in late September and early October 2020 during a mooring recovery cruise. Single-beam bathymetry data (which were only collected in 2020) were gathered using a commercial fish finder mounted on the workboat and connected to a data logger. 
    more » « less
  2. Depth profiles of temperature, dissolved oxygen, conductivity, specific conductance, chlorophyll a, and turbidity were collected with a CTD (Conductivity, Temperature, and Depth) profiler fitted with a SBE 43 Dissolved Oxygen sensor and an ECO Triplet Fluorometer and Backscattering Sensor from 2013 to 2022. From 2017-2022, pH and oxidation-reduction potential (ORP) were also collected with a SBE 27 pH and O.R.P. (redox) sensor. CTD profiles were collected in five drinking water reservoirs in southwestern Virginia, USA. All variables were measured every 0.25 seconds, resulting in depth profiles at approximately ten centimeter resolution. The five study reservoirs are: Beaverdam Reservoir (Vinton, Virginia), Carvins Cove Reservoir (Roanoke, Virginia), Falling Creek Reservoir (Vinton, Virginia), Gatewood Reservoir (Pulaski, Virginia), and Spring Hollow Reservoir (Salem, Virginia). Beaverdam, Carvins Cove, Falling Creek, and Spring Hollow Reservoirs are owned and operated by the Western Virginia Water Authority as primary or secondary drinking water sources for Roanoke, Virginia, and Gatewood Reservoir is a drinking water source for the town of Pulaski, Virginia. The dataset consists of CTD depth profiles measured at the deepest site of each reservoir adjacent to the dam as well as well as other upstream reservoir sites. The profiles were collected approximately fortnightly in the spring months, weekly in the summer and early autumn, and monthly in the late autumn and winter. Beaverdam Reservoir, Carvins Cove Reservoir, and Falling Creek Reservoir were sampled every year in the dataset (2013-2022); Spring Hollow Reservoir was not in sampled in 2018 or 2020–2022; and Gatewood Reservoir was only sampled in 2016. 
    more » « less
  3. Depth profiles of water biogeochemical properties were collected with SeaBird Electronics (SBE) Conductivity, Temperature, and Depth (CTD) profilers from 2013-2023. Data availability differs across years due to additional sensors that have been added or replaced over time. From 2013-2016, profiles were taken with a CTD equipped with an SBE 43 Dissolved Oxygen sensor and an ECO FLNTU sensor for turbidity and chlorophyll. From 2017-2023, profiles were taken with a CTD equipped with an SBE 43 Dissolved Oxygen sensor, an ECO FLNTU sensor for turbidity and chlorophyll, a PAR-LOG ICSW sensor for photosynthetically active radiation, and a SBE 27 pH and ORP (oxidation-reduction potential) sensor. In 2022 and 2023, profiles were also taken with an additional CTD equipped with an SBE 43 Dissolved Oxygen sensor; an ECO Triplet Scattering Fluorescence sensor for CDOM, phycocyanin, and phycoerythrin; an ECO FLNTU sensor for turbidity and chlorophyll; and PAR-LOG ICSW for photosynthetically active radiation. CTD profiles were collected in five drinking water reservoirs in southwestern Virginia, USA. All variables were measured every 0.25 seconds, resulting in depth profiles at approximately ten centimeter resolution. The five study reservoirs are: Beaverdam Reservoir (Vinton, Virginia), Carvins Cove Reservoir (Roanoke, Virginia), Falling Creek Reservoir (Vinton, Virginia), Gatewood Reservoir (Pulaski, Virginia), and Spring Hollow Reservoir (Salem, Virginia). Beaverdam, Carvins Cove, Falling Creek, and Spring Hollow Reservoirs are owned and operated by the Western Virginia Water Authority as primary or secondary drinking water sources for Roanoke, Virginia, and Gatewood Reservoir is a drinking water source for the town of Pulaski, Virginia. The dataset consists of CTD depth profiles measured at the deepest site of each reservoir adjacent to the dam as well as other upstream reservoir sites. The profiles were collected approximately fortnightly in the spring months, weekly in the summer and early autumn, and monthly in the late autumn and winter. Beaverdam Reservoir, Carvins Cove Reservoir, and Falling Creek Reservoir were sampled every year in the dataset (2013-2023); Spring Hollow Reservoir was only sampled 2013-2017 and 2019; and Gatewood Reservoir was only sampled in 2016. 
    more » « less
  4. Depth profiles of water biogeochemical properties were collected with SeaBird Electronics (SBE) Conductivity, Temperature, and Depth (CTD) profilers from 2013-2024 at five drinking water reservoirs in southwestern Virginia, USA. The study reservoirs are: Beaverdam Reservoir (Vinton, Virginia), Carvins Cove Reservoir (Roanoke, Virginia), Falling Creek Reservoir (Vinton, Virginia), Gatewood Reservoir (Pulaski, Virginia), and Spring Hollow Reservoir (Salem, Virginia). Beaverdam, Carvins Cove, Falling Creek, and Spring Hollow Reservoirs are owned and operated by the Western Virginia Water Authority as primary or secondary drinking water sources for Roanoke, Virginia, and Gatewood Reservoir is a drinking water source for the town of Pulaski, Virginia. The dataset consists of CTD depth profiles measured at the deepest site of each reservoir adjacent to the dam as well as other upstream reservoir sites. The profiles were collected approximately fortnightly in the spring months, weekly in the summer and early autumn, and monthly in the late autumn and winter. Beaverdam Reservoir, Carvins Cove Reservoir, and Falling Creek Reservoir were sampled every year in the dataset (2013-2024); Spring Hollow Reservoir was only sampled 2013-2017 and 2019; and Gatewood Reservoir was only sampled in 2016. Data availability differs across years due to additional sensors that have been added or replaced over time. From 2013-2016, profiles were taken with a CTD equipped with an SBE 43 Dissolved Oxygen sensor and an ECO FLNTU sensor for turbidity and chlorophyll. From 2017-2024, profiles were taken with a CTD equipped with an SBE 43 Dissolved Oxygen sensor, an ECO FLNTU sensor for turbidity and chlorophyll, a PAR-LOG ICSW sensor for photosynthetically active radiation, and a SBE 27 pH and ORP (oxidation-reduction potential) sensor. In 2022 and 2023, profiles were also taken with an additional CTD equipped with an SBE 43 Dissolved Oxygen sensor; an ECO Triplet Scattering Fluorescence sensor for CDOM, phycocyanin, and phycoerythrin; an ECO FLNTU sensor for turbidity and chlorophyll; and PAR-LOG ICSW for photosynthetically active radiation. All variables were measured every 0.25 seconds, resulting in depth profiles at approximately ten centimeter resolution. Maximum cast depth is not necessarily equal to site depth; see methods for more information. 
    more » « less
  5. Six small coastal moorings were deployed in Harrison Bay for approximately 30 days between early August and early September. Two moorings were outfitted with Nortek Aquadopps and optical backscatter sensors and the remainder were outfitted with RBR sensors which recorded some combination of salinity, temperature, pressure, and turbidity. All sensors were mounted within approximately 0.5 meters (m) of the bed to capture boundary-layer dynamics. Turbidity values were converted to total suspended solids concentrations. Wave parameters (significant wave height, peak wave period, and wave direction) were post-processed from Aquadopp data. Shear velocities (used in sediment-transport research) were calculated from current and wave data at the sites where Aquadopps were mounted. Data have been used in support of a publication, "Summertime sediment convergence on the Alaskan Beaufort Shelf and implications for ice rafting." 
    more » « less