Abstract Oxygen isotopic ratios are largely homogenous in the bulk of Earth’s mantle but are strongly fractionated near the Earth’s surface, thus these are robust indicators of recycling of surface materials to the mantle. Here we document a subtle but significant ~0.2‰ temporal decrease in δ18O in the shallowest continental lithospheric mantle since the Archean, no change in Δ′17O is observed. Younger samples document a decrease and greater heterogeneity of δ18O due to the development and progression of plate tectonics and subduction. We posit that δ18O in the oldest Archean samples provides the best δ18O estimate for the Earth of 5.37‰ for olivine and 5.57‰ for bulk peridotite, values that are comparable to lunar rocks as the moon did not have plate tectonics. Given the large volume of the continental lithospheric mantle, even small decreases in its δ18O may explain the increasing δ18O of the continental crust since oxygen is progressively redistributed by fluids between these reservoirs via high-δ18O sediment accretion and low-δ18O mantle in subduction zones.
more »
« less
This content will become publicly available on June 24, 2026
Enigmatic carbon isotopic variability in the oceanic upper mantle
Unraveling the origin(s) of carbon on Earth has remained challenging, not only because of the multiple isotopic fractionation episodes that may have occurred during planet formation processes but also because the end point of these processes, the current isotopic value of Earth’s deep carbon reservoirs remains poorly constrained. Here, we present carbon isotopic measurements on rare undegassed mid-ocean ridge basalts from the Pacific, Atlantic, and Arctic Oceans that have preserved the isotopic signature of their mantle source. We find that Earth’s present-day convecting upper mantle has variable δ13C value from ~−10 to −4‰, significantly different from the δ13C value of peridotitic diamonds and with the highest values being restricted to the Atlantic. Evidence for significant mantle heterogeneity contrasts with previous assumptions and its origin remains puzzling being uncorrelated with geochemical markers associated with either subduction and surficial recycling processes or lower mantle contributions. The data do not preclude other causes such as primordial mantle heterogeneity. We suggest that the δ13C value of the bulk silicate Earth may need to be revised.
more »
« less
- Award ID(s):
- 2407264
- PAR ID:
- 10635193
- Publisher / Repository:
- NA
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 122
- Issue:
- 25
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The measured carbon isotopic compositions of carbonate sediments (δ13Ccarb) on modern platforms are commonly13C‐enriched compared to predicted values for minerals forming in isotopic equilibrium with the dissolved inorganic carbon (DIC) of modern seawater. This offset undermines the assumption that δ13Ccarbvalues of analogous facies in the rock record are an accurate archive of information about Earth's global carbon cycle. We present a new data set of the diurnal variation in carbonate chemistry and seawater δ13CDICvalues on a modern carbonate platform. These data demonstrate that δ13Ccarbvalues on modern platforms are broadly representative of seawater, but only after accounting for the recent decrease in the δ13C value of atmospheric CO2and shallow seawater DIC due to anthropogenic carbon release, a phenomenon commonly referred to as the13C Suess effect. These findings highlight an important, yet overlooked, aspect of some modern carbonate systems, which must inform their use as ancient analogs.more » « less
-
Abstract The origin, evolution, and cycling of volatiles on the Moon are established by processes such as the giant moon forming impact, degassing of the lunar magma ocean, degassing during surface eruptions, and lunar surface gardening events. These processes typically induce mass‐dependent stable isotope fractionations. Mass‐independent fractionation of stable isotopes has yet to be demonstrated during events that release large volumes of gas on the moon and establish transient lunar atmospheres. We present quadruple sulfur isotope compositions of orange and black glass beads from drive tube 74002/1. The sulfur isotope and concentration data collected on the orange and black glasses confirm a role for magmatic sulfur loss during eruption. The Δ33S value of the orange glasses is homogenous (Δ33S = −0.029‰ ± 0.004‰, 2SE) and different from the isotopic composition of lunar basalts (Δ33S = 0.002‰ ± 0.004‰, 2SE). We link the negative Δ33S composition of the orange glasses to an anomalous sulfur source in the lunar mantle. The nature of this anomalous sulfur source remains unknown and is either linked to (a) an impactor that delivered anomalous sulfur after late accretion, (b) sulfur that was photochemically processed early during lunar evolution and was transported to the lunar mantle, or (c) a primitive sulfur component that survived mantle mixing. The examined black glass preserves a mass‐dependent Δ33S composition (−0.008‰ ± 0.006‰, 2SE). The orange and black glasses are considered genetically related, but the discrepancy in Δ33S composition among the two samples calls their relationship into question.more » « less
-
Multiple abrupt warming events (“hyperthermals”) punctuated the Early Eocene and were associated with deep-sea temperature increases of 2 to 4 °C, seafloor carbonate dissolution, and negative carbon isotope (δ13C) excursions. Whether hyperthermals were associated with changes in the global ocean overturning circulation is important for understanding their driving mechanisms and feedbacks and for gaining insight into the circulation’s sensitivity to climatic warming. Here, we present high-resolution benthic foraminiferal stable isotope records (δ13C and δ18O) throughout the Early Eocene Climate Optimum (~53.26 to 49.14 Ma) from the deep equatorial and North Atlantic. Combined with existing records from the South Atlantic and Pacific, these indicate consistently amplified δ13C excursion sizes during hyperthermals in the deep equatorial Atlantic. We compare these observations with results from an intermediate complexity Earth system model to demonstrate that this spatial pattern of δ13C excursion size is a predictable consequence of global warming-induced changes in ocean overturning circulation. In our model, transient warming drives the weakening of Southern Ocean-sourced overturning circulation, strengthens Atlantic meridional water mass aging gradients, and amplifies the magnitude of negative δ13C excursions in the equatorial to North Atlantic. Based on model-data consistency, we conclude that Eocene hyperthermals coincided with repeated weakening of the global overturning circulation. Not accounting for ocean circulation impacts on δ13C excursions will lead to incorrect estimates of the magnitude of carbon release driving hyperthermals. Our finding of weakening overturning in response to past transient climatic warming is consistent with predictions of declining Atlantic Ocean overturning strength in our warm future.more » « less
-
Carré, Matthieu (Ed.)Despite their importance for Earth’s climate and paleoceanography, the cycles of carbon (C) and its isotope13C in the ocean are not well understood. Models typically do not decompose C and13C storage caused by different physical, biological, and chemical processes, which makes interpreting results difficult. Consequently, basic observed features, such as the decreased carbon isotopic signature (δ13CDIC) of the glacial ocean remain unexplained. Here, we review recent progress in decomposing Dissolved Inorganic Carbon (DIC) into preformed and regenerated components, extend a precise and complete decomposition to δ13CDIC, and apply it to data-constrained model simulations of the Preindustrial (PI) and Last Glacial Maximum (LGM) oceans. Regenerated components, from respired soft-tissue organic matter and dissolved biogenic calcium carbonate, are reduced in the LGM, indicating a decrease in the active part of the biological pump. Preformed components increase carbon storage and decrease δ13CDICby 0.55 ‰ in the LGM. We separate preformed into saturation and disequilibrium components, each of which have biological and physical contributions. Whereas the physical disequilibrium in the PI is negative for both DIC and δ13CDIC, and changes little between climate states, the biological disequilibrium is positive for DIC but negative for δ13CDIC, a pattern that is magnified in the LGM. The biological disequilibrium is the dominant driver of the increase in glacial ocean C and the decrease in δ13CDIC, indicating a reduced sink of biological carbon. Overall, in the LGM, biological processes increase the ocean’s DIC inventory by 355 Pg more than in the PI, reduce its mean δ13CDICby an additional 0.52 ‰, and contribute 60 ppm to the lowering of atmospheric CO2. Spatial distributions of the δ13CDICcomponents are presented. Commonly used approximations based on apparent oxygen utilization and phosphate are evaluated and shown to have large errors.more » « less
An official website of the United States government
