Abstract Basalts from the Samoan volcanoes sample contributions from all of the classical mantle endmembers, including extreme EM II and high3He/4He components, as well as dilute contributions from the HIMU, EM I, and DM components. Here, we present multiple sulfur isotope data on sulfide extracted from subaerial and submarine whole rocks (N = 16) associated with several Samoan volcanoes—Vailulu‘u, Malumalu, Malutut, Upolu, Savai‘i, and Tutuila—that sample the full range of geochemical heterogeneity at Samoa and upon exhaustive compilation of S‐isotope data for Samoan lavas, allow for an assessment of the S‐isotope compositions associated with the different mantle components sampled by the Samoan hotspot. We observe variable S concentrations (10–1,000 ppm) and δ34S values (−0.29‰ ± 0.30 to +4.84‰ ± 0.30, 2σ). The observed variable S concentrations are likely due to sulfide segregation and degassing processes. The range in δ34S reflects mixing between the mantle origin and recycled components, and isotope fractionations associated with degassing. The majority of samples reveal Δ33S within uncertainty of Δ33S = 0‰ ± 0.008. Important exceptions to this observation include: (a) a negative Δ33S (−0.018‰ ± 0.008, 2σ) from a rejuvenated basalt on Upolu island (associated with a diluted EM I component) and (b) previously documented small (but resolvable) Δ33S values (up to +0.027 ± 0.016) associated with the Vai Trend (associated with a diluted HIMU component). The variability we observed in Δ33S is interpreted to reflect contributions of sulfur of different origins and likely multiple crustal protoliths. Δ36S versus Δ33S relationships suggest all recycled S is of post‐Archean origin.
more »
« less
Anomalous 33 S in the Lunar Mantle
Abstract The origin, evolution, and cycling of volatiles on the Moon are established by processes such as the giant moon forming impact, degassing of the lunar magma ocean, degassing during surface eruptions, and lunar surface gardening events. These processes typically induce mass‐dependent stable isotope fractionations. Mass‐independent fractionation of stable isotopes has yet to be demonstrated during events that release large volumes of gas on the moon and establish transient lunar atmospheres. We present quadruple sulfur isotope compositions of orange and black glass beads from drive tube 74002/1. The sulfur isotope and concentration data collected on the orange and black glasses confirm a role for magmatic sulfur loss during eruption. The Δ33S value of the orange glasses is homogenous (Δ33S = −0.029‰ ± 0.004‰, 2SE) and different from the isotopic composition of lunar basalts (Δ33S = 0.002‰ ± 0.004‰, 2SE). We link the negative Δ33S composition of the orange glasses to an anomalous sulfur source in the lunar mantle. The nature of this anomalous sulfur source remains unknown and is either linked to (a) an impactor that delivered anomalous sulfur after late accretion, (b) sulfur that was photochemically processed early during lunar evolution and was transported to the lunar mantle, or (c) a primitive sulfur component that survived mantle mixing. The examined black glass preserves a mass‐dependent Δ33S composition (−0.008‰ ± 0.006‰, 2SE). The orange and black glasses are considered genetically related, but the discrepancy in Δ33S composition among the two samples calls their relationship into question.
more »
« less
- Award ID(s):
- 2052944
- PAR ID:
- 10470821
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Planets
- Volume:
- 128
- Issue:
- 2
- ISSN:
- 2169-9097
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The sulfur chemistry of (162173) Ryugu particles can be a powerful tracer of molecular cloud chemistry and small body processes, but it has not been well explored. We report identification of organosulfurs and a sulfate grain in two Ryugu particles, A0070 and A0093. The sulfate grain shows oxygen isotope ratios (δ17O = −11.0 ± 4.3 per mil, δ18O = −7.8 ± 2.3 per mil) that are akin to silicates in Ryugu but exhibit mass-independent sulfur isotopic fractionation (Δ33S = +5 ± 2 per mil). A methionine-like coating on the sulfate grain is isotopically anomalous (δ15N = +62 ± 2 per mil). Both the sulfate and organosulfurs can simultaneously form and survive during aqueous alteration within Ryugu’s parent body, under reduced conditions, low temperature, and a pH >7 in the presence of N-rich organic molecules. This work extends the heliocentric zone where anomalous sulfur, formed by selective photodissociation of H2S gas in the molecular cloud, is found.more » « less
-
Abstract Sulfur belongs among H2O, CO2, and Cl as one of the key volatiles in Earth’s chemical cycles. High oxygen fugacity, sulfur concentration, and δ34S values in volcanic arc rocks have been attributed to significant sulfate addition by slab fluids. However, sulfur speciation, flux, and isotope composition in slab-dehydrated fluids remain unclear. Here, we use high-pressure rocks and enclosed veins to provide direct constraints on subduction zone sulfur recycling for a typical oceanic lithosphere. Textural and thermodynamic evidence indicates the predominance of reduced sulfur species in slab fluids; those derived from metasediments, altered oceanic crust, and serpentinite have δ34S values of approximately −8‰, −1‰, and +8‰, respectively. Mass-balance calculations demonstrate that 6.4% (up to 20% maximum) of total subducted sulfur is released between 30–230 km depth, and the predominant sulfur loss takes place at 70–100 km with a net δ34S composition of −2.5 ± 3‰. We conclude that modest slab-to-wedge sulfur transport occurs, but that slab-derived fluids provide negligible sulfate to oxidize the sub-arc mantle and cannot deliver34S-enriched sulfur to produce the positive δ34S signature in arc settings. Most sulfur has negative δ34S and is subducted into the deep mantle, which could cause a long-term increase in the δ34S of Earth surface reservoirs.more » « less
-
Volcanic rocks erupted among Pitcairn seamounts sample a mantle plume that exhibits an extreme Enriched Mantle-1 signature. The origin of this peculiar mantle endmember remains contentious, and could involve the recycling of marine sediments of Archean or Proterozoic ages, delaminated units from the lower continental crust, or metasomatized peridotites from a lithospheric mantle. Here, we report the sulfur multi-isotopic signature (32S, 33S, 34S, 36S) of 15 fresh submarine basaltic glasses from three Pitcairn seamounts. We observe evidence for magmatic degassing of sulfur from melts erupted ∼2,000 meters below seawater level (mbsl). Sulfur concentrations are correlated with eruption depth, and range between 1300 ppm S (collected ∼ 2,500 mbsl) and 600 ppm S (∼2,000 mbsl). The δ34S values can be accounted for under equilibrium isotope fractionation during degassing, with αgas-melt between 1.0020 and 1.0001 and starting δ34S values between −0.9‰ and +0.6‰. The δ34S estimates are similar or higher than MORB signatures, suggesting the contribution of recycled sulfur with a ∼ 1‰ 34S enrichment compared to the Pacific upper mantle. The Δ33S and Δ36S signatures average at +0.024±0.007‰ and +0.02±0.07‰ vs. CDT, respectively (all 1σ). Only Δ33S is statistically different from MORB, by +0.02‰. The Δ33S enrichment is invariant across degassing and sulfide segregation. We suggest it reflects a mantle source enrichment rather than a high-temperature fractionation of S in the basalts. Despite the small magnitude of the 33S-36S variations, our data require a substantial amount of recycled sulfur overwhelm the Pitcairn mantle source. We show that models involving metasomatized peridotites, lower crust units, or Archean sediments, may be viable, but are restricted to narrow sets of circumstances. Instead, scenarios involving the contribution of Proterozoic marine sediments appear to be the most parsimonious explanation for the EM-1 signature at Pitcairn.more » « less
-
Jupiter’s moon Io hosts extensive volcanism, driven by tidal heating. The isotopic composition of Io’s inventory of volatile chemical elements, including sulfur and chlorine, reflects its outgassing and mass-loss history and thus records information about its evolution. We used submillimeter observations of Io’s atmosphere to measure sulfur isotopes in gaseous sulfur dioxide and sulfur monoxide, and chlorine isotopes in gaseous sodium chloride and potassium chloride. We find34S/32S = 0.0595 ± 0.0038 (equivalent to δ34S = +347 ± 86‰), which is highly enriched compared to average Solar System values and indicates that Io has lost 94 to 99% of its available sulfur. Our measurement of37Cl/35Cl = 0.403 ± 0.028 (δ37Cl = +263 ± 88‰) shows that chlorine is similarly enriched. These results indicate that Io has been volcanically active for most (or all) of its history, with potentially higher outgassing and mass-loss rates at earlier times.more » « less
An official website of the United States government

