In 1918, the geologist Emile Grosse was commissioned to conduct geological studies in the Amagá Basin, Antioquia, Colombia. In 1923, Grosse finished a comprehensive cartographic work that became the cornerstone for the geology of the northwest (NW) Colombian Andes. Today, 100 years later, the volcanoclastic strata preserved in the Amagá Basin are crucial for understanding major Oligocene to Pliocene tectonic events that occurred in the NW South-American margin, including the fragmentation of the Nazca Plate, the collision of the Panamá-Chocó Block, and the shallowing of the subducted slab. Our contribution includes new mineral chemistry and zircon petrochronological data from the Combia Volcanic Complex and published data to provide a review of the Oligocene to Pliocene deformation, sedimentation, and magmatic patterns in the Amagá Basin and their implications for the tectonic evolution of NW South America. The Amagá Basin was the result of the Eocene to Oligocene uplift of the Western Cordillera followed by the Middle Miocene to Pliocene uplift of both the Central and Western cordilleras, events that modified the Miocene drainage network in the Northern Andes. Coeval with the final Miocene deformation phases in the Amagá basin, the magmatism of the Combia Complex was the result of subduction magmas emplaced in a continental crust affected by strike-slip tectonics.
more »
« less
This content will become publicly available on March 1, 2026
The Role of Transpressional Tectonics, Volcanism, and Fluvial Processes on the Oligocene to Pliocene Evolution of Intermontane Basins of the Western Colombian Andes
Abstract We use new and published detrital zircon U‐Pb data (n > 10,000) from Oligocene‐Pliocene strata of intermontane basins of the western Colombian Andes and surrounding regions to study the evolution of sedimentary systems during the transition from arc collision/accretion to subduction. Our database indicates a shift from a compartmentalized basin architecture, locally fed by transverse drainages, toward one with enhanced connectivity and longitudinal sediment dispersal during the Middle‐Late Miocene. These events were accompanied by the end of local marine influence on depocenters and the progressive uplift of the flanking Colombian Cordilleras as they became continuous topographic features. Post‐Pliocene local and transient disruption of longitudinal rivers was caused by damming and valley‐filling, attributed to volcaniclastic flows. We interpret the inherent segmentation of strike‐slip faults and their morphological expressions as the primary controls on depocenter evolution during Early‐Middle Miocene arc collision/accretion. The subsequent transition to subduction and the tectonic segmentation of the continental margin triggered asymmetrical basin inversion in the western Colombian Andes. The modern rugged morphology in the northern intermontane region is arguably associated with widespread uplift due to upper plate cooling and strengthening by shallow subduction of the Coiba microplate. Conversely, the wide and flat morphology of aggradational basins in the southern intermontane area is interpreted as the result of incomplete inversion and the dominance of strike‐slip tectonics. The “normal” subduction of the Malpelo microplate beneath southern Colombia might be linked to a higher heat flow and localized deformation in the intra‐ and back‐arc regions.
more »
« less
- Award ID(s):
- 1925939
- PAR ID:
- 10635213
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Tectonics
- Volume:
- 44
- Issue:
- 3
- ISSN:
- 0278-7407
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The Southern Puna plateau in the central Andes has a complicated tectonic history that includes episodes of distributed shortening and extension, lithospheric delamination, uplift and Quaternary backarc volcanism. In this study, the upper crustal structure and present‐day deformation in this area is investigated using a new regional earthquake catalog derived with a deep‐learning‐based phase picker. Results show abundant strike‐slip seismicity at shallow depths in the eastern Southern Puna plateau that reveals active fault systems in the area and indicates N‐S extension/E‐W compression that changes orientation and relative magnitude from north to south. A broad zone of seismic quiescence in the western plateau may indicate a zone of upper crustal decoupling from large‐scale deformation. The region separating the western and eastern plateau exhibits a complex stress field that can be related to the boundary of east/west oriented middle‐to‐lower crustal flow in the main volcanic arc. Southeast of the plateau in the Sierras Pampeanas, crustal seismicity deepens and is dominated by conjugate reverse faulting structures associated with the direction of plate convergence. Vp and Vs seismic velocity models of the upper crust obtained through local earthquake tomography with the improved seismic catalog show low‐velocity anomalies near intermontane basins, except in the Antofagasta basin where a high‐velocity anomaly possibly represents shallow intrusive component of Quaternary basaltic volcanism. Below the Cerro Galan caldera, an upper crustal 10‐day long earthquake swarm is observed which may indicate local stress perturbations from fluids at the top of the crustal magmatic system that feeds this volcano.more » « less
-
Booth, A.M. (Ed.)The Klamath Mountains province and adjacent Franciscan subduction complex (northern California–southern Oregon) together contain a world-class archive of subduction-related growth and stabilization of continental lithosphere. These key elements of the North American Cordillera expanded significantly from Middle Jurassic to Early Cretaceous time, apparently by a combination of tectonic accretion and continental arc– plus rift-related magmatic additions. The purpose of this field trip is twofold: to showcase the rock record of continental growth in this region and to discuss unresolved regional geologic problems. The latter include: (1) the extent to which Mesozoic orogenesis (e.g., Siskiyou and Nevadan events plus the onset of Franciscan accretion) was driven by collision of continental or oceanic fragments versus changes in plate motion, (2) whether growth involved “accordion tectonics” whereby marginal basins (and associated fringing arcs) repeatedly opened and closed or was driven by the accretion of significant volumes of material exotic to North America, and (3) the origin of the Condrey Mountain schist, a composite low-grade unit occupying an enigmatic structural window in the central Klamaths—at odds with the east-dipping thrust sheet regional structural “rule.” Respectively, we assert that (1) if collision drove orogenesis, the requisite exotic materials are missing (we cannot rule out the possibility that such materials were removed via subduction and/or strike slip faulting); (2) opening and closure of the Josephine ophiolite-floored and Galice Formation–filled basin demonstrably occurred adjacent to North America; and (3) the inner Condrey Mountain schist domain is equivalent to the oldest clastic Franciscan subunit (the South Fork Mountain schist) and therefore represents trench assemblages underplated >100 km inboard of the subduction margin, presumably during a previously unrecognized phase of shallow-angle subduction. In aggregate, these relations suggest that the Klamath Mountains and adjacent Franciscan complex represent telescoped arc and forearc upper plate domains of a dynamic Mesozoic subduction zone, wherein the downgoing oceanic plate took a variety of trajectories into the mantle. We speculate that the downgoing plate contained alternating tracts of smooth and dense versus rough and buoyant lithosphere—the former gliding into the mantle (facilitating slab rollback and upper plate extension) and the latter enhancing basal traction (driving upper plate compression and slab-shallowing). Modern snapshots of similarly complex convergent settings are abundant in the western Pacific Ocean, with subduction of the Australian plate beneath New Guinea and adjacent island groups providing perhaps the best analog.more » « less
-
null (Ed.)The topographic development of the Sierra Nevada, CA has been the topic of research for more than 100 years, yet disagreement remains as to whether 1) the Sierra Nevada records uplift in the late Mesozoic followed by no change or a decrease in elevation throughout the Cenozoic vs 2) uplift in the late Mesozoic followed by a decrease in elevation during the middle Cenozoic, and a second pulse of uplift in the late Cenozoic. The second pulse of uplift in the late Cenozoic is linked to late Cenozoic normal slip along the southern Sierra Nevada (SSN) range front normal fault (SSNF). To test this fault slip hypothesis, we report apatite (U-Th/He) (AHe) results from samples in the footwall of the SSNF collected along three vertical transects (from north to south, RV, MW, and MU) up the eastern escarpment of the SSN. Here, exposed bedrock fault planes and associated joints yield nearly identical strike-dip values of ~356°-69°NE. At the RV transect, 14 AHe samples record an elevation invariant mean age of 17.8 ± 5.3 Ma over a vertical distance of 802 m. At MW, 14 samples collected over a vertical distance of 1043 m yield an elevation invariant mean age of 26.6 ± 5.0 Ma. At MU, 8 samples record an elevation invariant mean age of 12.7 ± 3.7 Ma over a vertical distance of 501 m and 5 higher elevation samples record an elevation invariant mean age of 26.5 ± 3.3 Ma. At MU, the lowest elevation sample yielded an AFT age of 50 Ma and mean track length of 13.1 microns. Preliminary HeFTy modeling of the AHe and AFT ages from this sample yield accelerated cooling at ~22 Ma and ~10 Ma. Preliminary modeling (Pecube + landscape evolution) of the MU AHe results, elevation, and a prominent knickpoint yield an increase in fault slip rate at ~1-2 Ma. We interpret the elevation invariant ages and modeling results as indicating three periods—late Oligocene, middle Miocene, and Pliocene—of cooling and exhumation in the footwall of the SSNF due to normal fault slip. Our results are the first to document late Oligocene to Pliocene cooling and normal slip along the SSNF. Miocene and Pliocene age normal fault slip along the SSNF is contemporaneous with normal slip along range bounding faults across the Basin and Range, including the adjacent Inyo and White Mountains. Combined, these data indicate that since the late Oligocene the SSN defined the stable western limit of the Basin and Range.more » « less
-
Analysis of the late Miocene to Holocene McCallum sedimentary basin, located along the south side of the eastern Denali fault system, provides a better understanding of strike-slip basin evolution, timing of displacement on the Denali fault, and tectonics of the southern Alaska convergent margin. Analysis of the McCallum basin utilizing measured stratigraphic sections, lithofacies analyses, and 40Ar/39Ar tephra ages documented a 564-m-thick, two-member stratigraphy. Fine-grained, lacustrine-dominated environments characterized deposition of the lower member, and coarse-grained, stream-dominated alluvial-fan environments characterized deposition of the upper member. The 40Ar/39Ar dating of tephras indicated that the lower member was deposited from 6.1 to 5.0 Ma, and the upper member was deposited from 5.0 to 3.8 Ma. Our stratigraphic analysis of the McCallum basin illuminates the development of a composite strike-slip basin, with the deposition of the lower member occurring along a transtensional fault section, and deposition of the upper member occurring along a transpressional fault section. This change in depositional and tectonic settings is interpreted to reflect ~79–90 km of transport of the basin along the Denali fault system based on Pleistocene–Holocene slip rates. Previous studies of the timing of Cenozoic displacement on the Denali fault system utilizing sedimentary records emphasized a Paleogene component; our findings, however, also require a significant Neogene component. Neogene strike-slip displacement and basin development along the Denali fault system were broadly coeval with development of high topography and related clastic wedges across southern Alaska in response to flat slab subduction of the Yakutat microplate.more » « less
An official website of the United States government
