skip to main content

The topographic development of the Sierra Nevada, CA has been the topic of research for more than 100 years, yet disagreement remains as to whether 1) the Sierra Nevada records uplift in the late Mesozoic followed by no change or a decrease in elevation throughout the Cenozoic vs 2) uplift in the late Mesozoic followed by a decrease in elevation during the middle Cenozoic, and a second pulse of uplift in the late Cenozoic. The second pulse of uplift in the late Cenozoic is linked to late Cenozoic normal slip along the southern Sierra Nevada (SSN) range front normal fault (SSNF). To test this fault slip hypothesis, we report apatite (U-Th/He) (AHe) results from samples in the footwall of the SSNF collected along three vertical transects (from north to south, RV, MW, and MU) up the eastern escarpment of the SSN. Here, exposed bedrock fault planes and associated joints yield nearly identical strike-dip values of ~356°-69°NE. At the RV transect, 14 AHe samples record an elevation invariant mean age of 17.8 ± 5.3 Ma over a vertical distance of 802 m. At MW, 14 samples collected over a vertical distance of 1043 m yield an elevation invariant mean age of more » 26.6 ± 5.0 Ma. At MU, 8 samples record an elevation invariant mean age of 12.7 ± 3.7 Ma over a vertical distance of 501 m and 5 higher elevation samples record an elevation invariant mean age of 26.5 ± 3.3 Ma. At MU, the lowest elevation sample yielded an AFT age of 50 Ma and mean track length of 13.1 microns. Preliminary HeFTy modeling of the AHe and AFT ages from this sample yield accelerated cooling at ~22 Ma and ~10 Ma. Preliminary modeling (Pecube + landscape evolution) of the MU AHe results, elevation, and a prominent knickpoint yield an increase in fault slip rate at ~1-2 Ma. We interpret the elevation invariant ages and modeling results as indicating three periods—late Oligocene, middle Miocene, and Pliocene—of cooling and exhumation in the footwall of the SSNF due to normal fault slip. Our results are the first to document late Oligocene to Pliocene cooling and normal slip along the SSNF. Miocene and Pliocene age normal fault slip along the SSNF is contemporaneous with normal slip along range bounding faults across the Basin and Range, including the adjacent Inyo and White Mountains. Combined, these data indicate that since the late Oligocene the SSN defined the stable western limit of the Basin and Range. « less
; ; ;
Award ID(s):
Publication Date:
Journal Name:
Geological Society of America Abstracts with Programs
Sponsoring Org:
National Science Foundation
More Like this
  1. Late Cenozoic evolution of the Baja California (BC) peninsula governs its species diversity, with changes to terrestrial habitats and shorelines driven by volcanic and tectonic processes. New geologic mapping and geochronology in central BC help assess if recent landscape evolution created a barrier to gene flow. The NW-trending topographic divide of the BC peninsula near San Ignacio-Santa Rosalia (27.4N) is a low (400500 m asl), broad (2030 km-wide) pass. At the pass, ~2022-Ma volcaniclastic strata, mafic lavas, fluvial conglomerate, cross-bedded eolian sandstone, and a felsic tuff dip ~515 SW. Similar lithology and chronology suggest these strata correlate to the lower Comondu Group (CG). They are overlain by middle Miocene (~1114 Ma) mafic lavas with similar SW dips that overlap in age with the upper CG. NW of the pass, upper Miocene (~9.511 Ma) post-CG volcaniclastic strata and mafic lava flows are exposed in the Sierra San Francisco and dip ~10 SE on its SE flank, inclined differently than older SW-dipping CG at the pass. The basalt of Esperanza (~10 Ma) unconformably overlies the CG at and west of the pass. Its ~1 regional dip suggests that ~515 of SW tilting occurred prior to ~10 Ma in the footwall of themore »NW-striking Campamento fault, located at the base of the ~150 m-high rift escarpment. The N-striking Arroyo Yaqui fault, ~10 km E of the Campamento fault in a low-relief region capped by Quaternary marine strata, exposes crystalline basement in its footwall and may be a major rift margin structure. Thus the location, orientation, and age of the divide may be controlled by rift-related faulting and tilting plus beveling and lateral retreat of the escarpment. Pliocene tidal sediments occur up to ~200 m asl ~20 km west of the low pass similar to Pliocene marine strata east of the pass at ~300 m asl, indicating late Miocene to Pliocene subsidence was followed by >200 m of post-4 Ma uplift. Uplift was likely driven by transtensional faulting and possibly magmatic inflation by ~7090 km-wavelength domes. Further mapping will constrain the timing of vertical crustal motions and test whether the tidal embayment crossed the peninsula through this low pass, isolated species, and prevented terrestrial gene flow. Integration of geologic and genetic data will determine how volcano- tectonic processes shaped genetic diversity.« less
  2. Abstract Tectonic interpretation of the central Sierra Nevada—whether the crest of the Sierra Nevada (California, USA) was uplifted in the late Cenozoic or whether the range has undergone continuous down-wearing since the Late Cretaceous—is controversial, since there is no obvious tectonic explanation for renewed uplift. The strongest direct evidence for late Cenozoic uplift of the central Sierra Nevada comes from study of the Trachyandesite of Kennedy Table, which followed the course of the Miocene San Joaquin River but has a steeper gradient than the modern river. Early workers attributed this steeper gradient to tilting of the Sierra Nevada block since the late Miocene, resulting in 2 km of range-crest uplift. However, this interpretation has been contested on grounds that the Miocene river gradient had to be assumed and that the Sierran Batholith could have warped during tilting, thus failing to uplift the range crest. The objective of this study was to obtain quantitative data that test these criticisms. The Trachyandesite of Kennedy Table is a chain of 33 remnants of a single lava flow as thick as 65 m, preserved for 21 km from Squaw Leap to Little Dry Creek, close to the modern San Joaquin River in the foothillsmore »of the Sierra Nevada. Several remnants lie on fluvial gravel of the late Miocene San Joaquin River. Early workers speculated that the lava concealed its own (unrecognized) vent, but in 2011, we identified the vent on the Middle Fork of the San Joaquin River, 13.5 km south of Deadman Pass and 70 km northeast of Kennedy Table. The vent complex intrudes Cretaceous granite, has 285 m relief, and is an intricately jointed intrusion that grades up into a glassy lava flow. Composition (58% SiO2) and 40Ar/39Ar age (9.3 Ma) are identical at the vent and downstream. Basal elevations of remnants were recorded, and the present-day basal gradients of several were adjusted for apparent dip and projected along a vertical plane at 220° (the estimated tilt azimuth). The basal gradients are far steeper than that of the modern river, but they differ slightly from reach to reach and are thus inconsistent measures of the post-Miocene tilt. Likewise, relief eroded atop most remnants renders modeling of upper surfaces suspect. At Little Dry Creek, however, a chain of nine remnants rests on fluvial floodplain sand and gravel; this chain trends 230°, and its smooth basal contact now dips 1.36° (adjusted at 220°). Projection of this dip 89 km from the 207 m base of the most distal remnant at Little Dry Creek to the vent intrusion falls far below the 2760 m intrusion-to-lava-flow transition near the Sierran crest, showing that the Sierran block has not undergone pronounced convex warping. Using elevation data on paleoriver meanders preserved by the lava flow, we show that the paleogradient has a cosine dependence on meander-section azimuth, indicating tilting. Subtraction of 1.07° of dip restores the data to an azimuth-independent configuration, indicating total tilting since 9.3 Ma of 1.07° and an original large-scale gradient of 0.46°, similar to the published value of 0.33° at Squaw Leap, but larger than the previously obtained value of 0.057° at Little Dry Creek. Subtraction of those Miocene estimates from the observable 1.643° tilt along the section from Little Dry Creek to the vent yields vent uplift of 2464 m (for 0.057°), 1835 m (for 0.46°), and 2040 m (for 0.33°). Confirmation of earlier assumptions regarding Miocene river gradient and block rigidity greatly strengthens the case for ~2 km of late Cenozoic uplift of the central Sierra Nevada crest.« less
  3. Abstract Terrane accretion forms lithospheric-scale fault systems that commonly experience long and complex slip histories. Unraveling the evolution of these suture zone fault systems yields valuable information regarding the relative importance of various upper crustal structures and their linkage through the lithosphere. We present new bedrock geologic mapping and geochronology data documenting the geologic evolution of reactivated shortening structures and adjacent metamorphic rocks in the Alaska Range suture zone at the inboard margin of the Wrangellia composite terrane in the eastern Alaska Range, Alaska, USA. Detrital zircon uranium-lead (U-Pb) age spectra from metamorphic rocks in our study area reveal two distinct metasedimentary belts. The Maclaren schist occupies the inboard (northern) belt, which was derived from terranes along the western margin of North America during the mid- to Late Cretaceous. In contrast, the Clearwater metasediments occupy the outboard (southern) belt, which was derived from arcs built on the Wrangellia composite terrane during the Late Jurassic to Early Cretaceous. A newly discovered locality of Alaska-type zoned ultramafic bodies within the Clearwater metasediments provides an additional link to the Wrangellia composite terrane. The Maclaren and Clearwater metasedimentary belts are presently juxtaposed by the newly identified Valdez Creek fault, which is an upper crustalmore »reactivation of the Valdez Creek shear zone, the Late Cretaceous plate boundary that initially brought them together. 40Ar/39Ar mica ages reveal independent post-collisional thermal histories of hanging wall and footwall rocks until reactivation localized on the Valdez Creek fault after ca. 32 Ma. Slip on the Valdez Creek fault expanded into a thrust system that progressed southward to the Broxson Gulch fault at the southern margin of the suture zone and eventually into the Wrangellia terrane. Detrital zircon U-Pb age spectra and clast assemblages from fault-bounded Cenozoic gravel deposits indicate that the thrust system was active during the Oligocene and into the Pliocene, likely as a far-field result of ongoing flat-slab subduction and accretion of the Yakutat microplate. The Valdez Creek fault was the primary reactivated structure in the suture zone, likely due to its linkage with the reactivated boundary zone between the Wrangellia composite terrane and North America in the lithospheric mantle.« less
  4. Cooling ages of tectonic blocks between the Yakutat microplate and the Fairweather transform boundary fault reveal exhumation due to strike-slip faulting and subsequent collision into this tectonic corner. The Yakutat and Boundary faults are splay faults that define tectonic panels with bounding faults that have evidence of both reverse and strike-slip motion, and they are parallel to the northern end of the Fairweather fault. Uplift and exhumation simultaneous with strike-slip motion have been significant since the late Miocene. The blocks are part of an actively deforming tectonic corner, as indicated by the ~14–1.5 m of coseismic uplift from the M 8.1 Yakutat Bay earthquake of 1899 and 4 m of strike-slip motion in the M 7.9 Lituya Bay earthquake in 1958 along the Fairweather fault. New apatite (U-Th-Sm)/He (AHe) and zircon (U-Th)/He (ZHe) data reveal that the Boundary block and the Russell Fiord block have different cooling histories since the Miocene, and thus the Boundary fault that separates them is an important tectonic boundary. Upper Cretaceous to Paleocene flysch of the Russell Fiord block experienced a thermal event at 50 Ma, then a relatively long period of burial until the late Miocene when initial exhumation resulted in ZHe ages betweenmore »7 and 3 Ma, and then very rapid exhumation in the last 1–1.5 m.y. Exhumation of the Russell Fiord block was accommodated by reverse faulting along the Yakutat fault and the newly proposed Calahonda fault, which is parallel to the Yakutat fault. The Eocene schist of Nunatak Fiord and 54–53 Ma Mount Stamy and Mount Draper granites in the Boundary block have AHe and ZHe cooling ages that indicate distinct and very rapid cooling between ca. 5 Ma and ca. 2 Ma. Rocks of the Chugach Metamorphic Complex to the northeast of the Fairweather fault and in the fault zone were brought up from 10–12 km at extremely high rates (>5 km/m.y.) since ca. 3 Ma, which implies a significant component of dip-slip motion along the Fairweather fault. The adjacent rocks of the Boundary block were exhumed with similar rates and from similar depths during the early Pliocene, when they may have been located 220–250 km farther south near Baranof Island. The profound and significant exhumation of the three tectonic blocks in the last 5 m.y. has probably been driven by uplift and erosional exhumation due to contraction as rocks collide into this tectonic corner. The documented spatial and temporal pattern of exhumation is in agreement with the southward shift of focused exhumation at the St. Elias syntaxial corner and the southeast propagation of the fold-and thrust belt.« less
  5. Abstract The Ruby Mountains–East Humboldt Range–Wood Hills–Pequop Mountains (REWP) metamorphic core complex, northeast Nevada, exposes a record of Mesozoic contraction and Cenozoic extension in the hinterland of the North American Cordillera. The timing, magnitude, and style of crustal thickening and succeeding crustal thinning have long been debated. The Pequop Mountains, comprising Neoproterozoic through Triassic strata, are the least deformed part of this composite metamorphic core complex, compared to the migmatitic and mylonitized ranges to the west, and provide the clearest field relationships for the Mesozoic–Cenozoic tectonic evolution. New field, structural, geochronologic, and thermochronological observations based on 1:24,000-scale geologic mapping of the northern Pequop Mountains provide insights into the multi-stage tectonic history of the REWP. Polyphase cooling and reheating of the middle-upper crust was tracked over the range of <100 °C to 450 °C via novel 40Ar/39Ar multi-diffusion domain modeling of muscovite and K-feldspar and apatite fission-track dating. Important new observations and interpretations include: (1) crosscutting field relationships show that most of the contractional deformation in this region occurred just prior to, or during, the Middle-Late Jurassic Elko orogeny (ca. 170–157 Ma), with negligible Cretaceous shortening; (2) temperature-depth data rule out deep burial of Paleozoic stratigraphy, thus refuting models that incorporatemore »large cryptic overthrust sheets; (3) Jurassic, Cretaceous, and Eocene intrusions and associated thermal pulses metamorphosed the lower Paleozoic–Proterozoic rocks, and various thermochronometers record conductive cooling near original stratigraphic depths; (4) east-draining paleovalleys with ∼1–1.5 km relief incised the region before ca. 41 Ma and were filled by 41–39.5 Ma volcanic rocks; and (5) low-angle normal faulting initiated after the Eocene, possibly as early as the late Oligocene, although basin-generating extension from high-angle normal faulting began in the middle Miocene. Observed Jurassic shortening is coeval with structures in the Luning-Fencemaker thrust belt to the west, and other strain documented across central-east Nevada and Utah, suggesting ∼100 km Middle-Late Jurassic shortening across the Sierra Nevada retroarc. This phase of deformation correlates with terrane accretion in the Sierran forearc, increased North American–Farallon convergence rates, and enhanced Jurassic Sierran arc magmatism. Although spatially variable, the Cordilleran hinterland and the high plateau that developed across it (i.e., the hypothesized Nevadaplano) involved a dynamic pulsed evolution with significant phases of both Middle-Late Jurassic and Late Cretaceous contractional deformation. Collapse long postdated all of this contraction. This complex geologic history set the stage for the Carlin-type gold deposit at Long Canyon, located along the eastern flank of the Pequop Mountains, and may provide important clues for future exploration.« less