skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: A Matrix-Based Approach to Unified Synthesis of Planar Four-Bar Mechanisms for Motion Generation With Position, Velocity, and Acceleration Constraints
Abstract This paper introduces a novel matrix-based approach for the simultaneous type and dimensional synthesis of planar four-bar linkage mechanisms, accommodating various practical constraints, including position, velocity, acceleration, and joint placements. Traditional design processes segregate type synthesis, the determination of joint and link configurations, from dimensional synthesis, which involves specifying link sizes and pivot locations. This segregation often leads to complexities in addressing the complete design challenge. The novel methodology proposed in this paper departs from the conventional sequential design approach by concurrently evaluating type and dimensional parameters using a data-driven matrix formulation. The crux of the paper’s methodology involves formulating a singular design equation through a transformation matrix, parameterized by the Cartesian parameters of the mechanism’s dyads. This formulation linearly expresses a broad range of constraints, facilitating the identification of viable solutions through singular value decomposition and null space analysis. This integrated approach not only simplifies the synthesis process but also provides direct insights into the mechanism’s parameters, encompassing both type and dimensions, thereby obviating the need for further interpretative steps common to the use of quaternions and kinematic mapping. In essence, the paper presents two main contributions: the development of a unified design equation capable of encompassing a wide array of constraints within the mechanism synthesis process, and the introduction of an algorithm that effectively identifies all potential planar four-bar linkage mechanisms by accurately satisfying up to five constraints. This approach promises to enhance the design and optimization of mechanical systems by offering a more holistic and efficient pathway to mechanism synthesis.  more » « less
Award ID(s):
2126882
PAR ID:
10635247
Author(s) / Creator(s):
;
Publisher / Repository:
ASME
Date Published:
Journal Name:
Journal of Computing and Information Science in Engineering
Volume:
24
Issue:
12
ISSN:
1530-9827
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this study, a novel human-in-the-loop design method using a genetic algorithm (GA) is presented to design a low-cost and easy-to-use four-bar linkage medical device for upper limb muscle rehabilitation. The four-bar linkage can generate a variety of coupler point trajectories by using different link lengths. For this medical device, patients grab the coupler point handle and rotate the arm along the designed coupler point trajectory to exercise upper limb muscles. The design procedures include three basic steps: First, for a set of link lengths, a complete coupler point trajectory is generated from four-bar linkage kinematics; second, optimization-based motion prediction is utilized to predict arm motion (joint angle profiles) subjected to hand grasping and joint angle limit constraints; third, the predicted joint angles and given hand forces are imported into an OpenSim musculoskeletal arm model to calculate the muscle forces and activations by using the OpenSim static optimization. In the GA optimization formulation, the design variables are the four-bar link lengths. The objective function is to maximize a specific muscle’s exertion for a complete arm rotation. Finally, different four-bar configurations are designed for different muscle strength exercises. The proposed human-in-the-loop design approach successfully integrates GA with linkage kinematics, arm motion prediction, and OpenSim static optimization for four-bar linkage design for upper limb muscle strength rehabilitation. 
    more » « less
  2. Abstract This paper focuses on the representation and synthesis of coupler curves of planar mechanisms using a deep neural network. While the path synthesis of planar mechanisms is not a new problem, the effective representation of coupler curves in the context of neural networks has not been fully explored. This study compares four commonly used features or representations of four-bar coupler curves: Fourier descriptors, wavelets, point coordinates, and images. The results demonstrate that these diverse representations can be unified using a generative AI framework called variational autoencoder (VAE). This study shows that a VAE can provide a standalone representation of a coupler curve, regardless of the input representation, and that the compact latent dimensions of the VAE can be used to describe coupler curves of four-bar linkages. Additionally, a new approach that utilizes a VAE in conjunction with a fully connected neural network to generate dimensional parameters of four-bar linkage mechanisms is proposed. This research presents a novel opportunity for the automated conceptual design of mechanisms for robots and machines. 
    more » « less
  3. null (Ed.)
    Abstract Cognate linkages are mechanisms that share the same motion, a property that can be useful in mechanical design. This article treats planar curve cognates, that is, planar mechanisms with rotational joints whose coupler points draw the same curve, as well as coupler cognates and timed curve cognates. The purpose of this article is to develop a straightforward method based solely on kinematic equations to construct cognates. The approach computes cognates that arise from permuting link rotations and is shown to reproduce all of the known results for cognates of four-bar and six-bar linkages. This approach is then used to construct a cognate of an eight-bar and a ten-bar linkage. 
    more » « less
  4. This paper presents a method to develop continuum/ compliant mechanisms based on planar bar-node linkage precursors. The method takes as inputs the initial node positions and connectivity data of a given bar-node linkage and converts it into a continuum/compliant mechanism having the same targeted motion. The line bars of the given bar-node linkage are thickened into trapezoidal planar members and the nodes are thickened by introducing fillets at each intersection of bars. The thicknesses of the bars and the shape parameters of the fillets in the continuum/compliant linkage are optimized to obtain the same targeted motion of the given bar-node linkage while keeping stresses below a maximum allowable value. Each design generated during the optimization process is evaluated using finite element analysis. The present method allows for the synthesis of mechanisms having the following advantages over conventional bar-node linkages: 1) They do not require complex ball or pin joints; 2) they can be readily 3-D printed and sizescaled, and 3) they can be optimized to decrease stresses below a maximum allowable value. Furthermore, the method uses a relatively small number of optimization variables (thicknesses of the members, shape-parameters of the fillets), making it an efficient alternative to more complex and computationally intensive methods for synthesizing compliant mechanisms such as those incorporating topology optimization. 
    more » « less
  5. This paper presents a design procedure to achieve a flapping wing mechanism for a micro air vehicle that drives both the swing and pitch movement of the wing with one actuator. The mechanism combines a planar four bar linkage with a spatial RSSR attached to the input and output links forming a spatial Stephenson six-bar linkage. Function generation synthesis yields a planar four-bar that controls the wing swing profile. The pitch control is synthesized by inverting the movement of the combined system to isolate and compute the SS chain. In order to ensure the design achieves the specified task precision points, the SS chain was randomized within a prescribed tolerance zone. The result was 29 designs, one of which is presented in detail. 
    more » « less