Abstract In this paper, we first presented a four-bar linkage mechanism for actuating the wings in a flapping wing flying robot. After that, given the additional constraints imposed by the four-bar linkage, we parameterized the wing kinematics to provide sufficient control authority for stabilizing the system during 3D hovering. The four-bar linkage allows the motors to spin continuously in one direction while generating flapping motion on the wings. However, this mechanism constrains the flapping angle range which is a common control parameter in controlling such systems. To address this problem, we divided each wingbeat cycle into four variable-time segments which is an extension to previous work on split-cycle modulation using wing bias but allows the use of a constant flapping amplitude constraint for the wing kinematic. Finally, we developed an optimization framework to control the system for fast recovery while guaranteeing the stability. The results showed that the proposed control parameters are capable of creating symmetric and asymmetric motions between the two wings and, therefore can stabilize the hovering system with minimal actuation and flapping angle amplitude constraint.
more »
« less
Design of a Spatial Six-Bar Flapping Wing Mechanism for Combined Control of Swing and Pitch
This paper presents a design procedure to achieve a flapping wing mechanism for a micro air vehicle that drives both the swing and pitch movement of the wing with one actuator. The mechanism combines a planar four bar linkage with a spatial RSSR attached to the input and output links forming a spatial Stephenson six-bar linkage. Function generation synthesis yields a planar four-bar that controls the wing swing profile. The pitch control is synthesized by inverting the movement of the combined system to isolate and compute the SS chain. In order to ensure the design achieves the specified task precision points, the SS chain was randomized within a prescribed tolerance zone. The result was 29 designs, one of which is presented in detail.
more »
« less
- Award ID(s):
- 1636017
- PAR ID:
- 10065827
- Date Published:
- Journal Name:
- International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
- Volume:
- Mechanisms and Robotics
- Page Range / eLocation ID:
- V05BT08A027
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper examines the results of synthesis algorithms for four-, six-, and eight-bar linkages for rectilinear movement. Rec- tilinear movement is useful for applications such as suspensions that provide linear movement with out a rotation component. The algorithm yields one four-bar, seven six-bar, and 32 eight- bar linkages. The synthesis strategy begins with a task guided by a multi-degree of freedom chain. The algorithm computes constraints to guide the required movement with one degree-of- freedom. Each computed design is analyzed to ensure smooth movement through the specified set of task positions. Finally, we identify the design that has the least variation from a pure recti- linear movement.more » « less
-
This paper examines the results of synthesis algorithms for four-, six-, and eight-bar linkages for rectilinear movement. Rectilinear movement is useful for applications such as suspensions that provide linear movement with out a rotation component. The algorithm yields one four-bar, seven six-bar, and 32 eightbar linkages. The synthesis strategy begins with a task guided by a multi-degree of freedom chain. The algorithm computes constraints to guide the required movement with one degree-offreedom. Each computed design is analyzed to ensure smooth movement through the specified set of task positions. Finally, we identify the design that has the least variation from a pure rectilinear movement.more » « less
-
Abstract This paper introduces a novel matrix-based approach for the simultaneous type and dimensional synthesis of planar four-bar linkage mechanisms, accommodating various practical constraints, including position, velocity, acceleration, and joint placements. Traditional design processes segregate type synthesis, the determination of joint and link configurations, from dimensional synthesis, which involves specifying link sizes and pivot locations. This segregation often leads to complexities in addressing the complete design challenge. The novel methodology proposed in this paper departs from the conventional sequential design approach by concurrently evaluating type and dimensional parameters using a data-driven matrix formulation. The crux of the paper’s methodology involves formulating a singular design equation through a transformation matrix, parameterized by the Cartesian parameters of the mechanism’s dyads. This formulation linearly expresses a broad range of constraints, facilitating the identification of viable solutions through singular value decomposition and null space analysis. This integrated approach not only simplifies the synthesis process but also provides direct insights into the mechanism’s parameters, encompassing both type and dimensions, thereby obviating the need for further interpretative steps common to the use of quaternions and kinematic mapping. In essence, the paper presents two main contributions: the development of a unified design equation capable of encompassing a wide array of constraints within the mechanism synthesis process, and the introduction of an algorithm that effectively identifies all potential planar four-bar linkage mechanisms by accurately satisfying up to five constraints. This approach promises to enhance the design and optimization of mechanical systems by offering a more holistic and efficient pathway to mechanism synthesis.more » « less
-
null (Ed.)Abstract Cognate linkages are mechanisms that share the same motion, a property that can be useful in mechanical design. This article treats planar curve cognates, that is, planar mechanisms with rotational joints whose coupler points draw the same curve, as well as coupler cognates and timed curve cognates. The purpose of this article is to develop a straightforward method based solely on kinematic equations to construct cognates. The approach computes cognates that arise from permuting link rotations and is shown to reproduce all of the known results for cognates of four-bar and six-bar linkages. This approach is then used to construct a cognate of an eight-bar and a ten-bar linkage.more » « less
An official website of the United States government

