skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2026

Title: Path Generative Model Based on Conditional β -Variational Auto Encoder for Four-Bar Mechanism Design
Abstract This article introduces a novel methodology based on conditional β-variational autoencoder (cβ-VAE) architecture to generate diverse types of planar four-bar mechanisms for a given coupler curve. Central to our contribution is the novel integration of cross- and self-attention layers within the VAE framework, facilitating an encoding and decoding process that captures the complex interdependencies of mechanism parameters and associated coupler curves. We propose a unified representation scheme for four-bar mechanisms with both revolute and prismatic joints, utilizing a consistent set of joints to describe each mechanism type. To support and validate our methodology, we have compiled an extensive dataset featuring both open and closed coupler curves of the aforementioned mechanism types. Furthermore, the article introduces three metrics aimed at quantifying the efficacy of our model, alongside an innovative algorithm designed to enhance the predictive outcomes by identifying and computing cognate mechanisms.  more » « less
Award ID(s):
2126882
PAR ID:
10635250
Author(s) / Creator(s):
; ;
Publisher / Repository:
ASME
Date Published:
Journal Name:
Journal of Mechanisms and Robotics
Volume:
17
Issue:
6
ISSN:
1942-4302
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This paper focuses on the representation and synthesis of coupler curves of planar mechanisms using a deep neural network. While the path synthesis of planar mechanisms is not a new problem, the effective representation of coupler curves in the context of neural networks has not been fully explored. This study compares four commonly used features or representations of four-bar coupler curves: Fourier descriptors, wavelets, point coordinates, and images. The results demonstrate that these diverse representations can be unified using a generative AI framework called variational autoencoder (VAE). This study shows that a VAE can provide a standalone representation of a coupler curve, regardless of the input representation, and that the compact latent dimensions of the VAE can be used to describe coupler curves of four-bar linkages. Additionally, a new approach that utilizes a VAE in conjunction with a fully connected neural network to generate dimensional parameters of four-bar linkage mechanisms is proposed. This research presents a novel opportunity for the automated conceptual design of mechanisms for robots and machines. 
    more » « less
  2. Abstract The design of single-degree-of-freedom spatial mechanisms tracing a given path is challenging due to the highly non-linear relationships between coupler curves and mechanism parameters. This work introduces an innovative application of deep learning to the spatial path synthesis of one-degree-of-freedom spatial revolute-spherical-cylindrical-revolute (RSCR) mechanisms, aiming to find the non-linear mapping between coupler curve and mechanism parameters and generate diverse solutions to the path synthesis problem. Several deep learning models are explored, including multi-layer perceptron (MLP), variational autoencoder (VAE) plus MLP, and a novel model using conditional -β− VAE (c −β− VAE). We found that the c -β– VAE model withβ= 10 achieves superior performance by predicting multiple mechanisms capable of generating paths that closely approximate the desired input path. This study also builds a publicly available database of over 5 million paths and their corresponding RSCR mechanisms. The database provides a solid foundation for training deep learning models. An application in the design of human upper-limb rehabilitation mechanism is presented. Several RSCR mechanisms closely matching the wrist and elbow path collected from human movements are found using our deep learning models. This application underscores the potential of RSCR mechanisms and the effectiveness of our model in addressing complex, real-world spatial mechanism design problems. 
    more » « less
  3. null (Ed.)
    Abstract Cognate linkages are mechanisms that share the same motion, a property that can be useful in mechanical design. This article treats planar curve cognates, that is, planar mechanisms with rotational joints whose coupler points draw the same curve, as well as coupler cognates and timed curve cognates. The purpose of this article is to develop a straightforward method based solely on kinematic equations to construct cognates. The approach computes cognates that arise from permuting link rotations and is shown to reproduce all of the known results for cognates of four-bar and six-bar linkages. This approach is then used to construct a cognate of an eight-bar and a ten-bar linkage. 
    more » « less
  4. Abstract Kinematic simulation of planar n-bar mechanisms has been an intense topic of study for several decades now. However, a large majority of efforts have focused on position analysis of such mechanisms with limited links and joint types. This article presents a novel, unified approach to the analysis of geometric constraints of planar n-bar mechanisms with revolute joint (R-joint), prismatic joint (P-joint), and rolling joint. This work is motivated by a need to create and program a system of constraint equations that deal with different types of joints in a unified way. A key feature of this work is that the rolling joint constraints are represented by four-point models, which enables us to use the well-established undirected graph rigidity analysis algorithms. As a result, mechanisms with an arbitrary combination of revolute-, prismatic joints, and wheel/gear/wheel-belt chains without any limitations on their actuation scheme can be analyzed and simulated efficiently for potential implementation in interactive computer software and large-scale data generation. 
    more » « less
  5. Abstract In recent years, there has been a strong interest in applying machine learning techniques to path synthesis of linkage mechanisms. However, progress has been stymied due to a scarcity of high-quality datasets. In this article, we present a comprehensive dataset comprising nearly three million samples of 4-, 6-, and 8-bar linkage mechanisms with open and closed coupler curves. Current machine learning approaches to path synthesis also lack standardized metrics for evaluating outcomes. To address this gap, we propose six key metrics to quantify results, providing a foundational framework for researchers to compare new models with existing ones. We also present a variational autoencoder-based model in conjunction with a k-nearest neighbor search approach to demonstrate the utility of our dataset. In the end, we provide example mechanisms that generate various curves along with a numerical evaluation of the proposed metrics. 
    more » « less