skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: Path synthesis of spatial revolute-spherical-cylindrical-revolute mechanisms using deep learning
Abstract The design of single-degree-of-freedom spatial mechanisms tracing a given path is challenging due to the highly non-linear relationships between coupler curves and mechanism parameters. This work introduces an innovative application of deep learning to the spatial path synthesis of one-degree-of-freedom spatial revolute-spherical-cylindrical-revolute (RSCR) mechanisms, aiming to find the non-linear mapping between coupler curve and mechanism parameters and generate diverse solutions to the path synthesis problem. Several deep learning models are explored, including multi-layer perceptron (MLP), variational autoencoder (VAE) plus MLP, and a novel model using conditional -β− VAE (c −β− VAE). We found that the c -β– VAE model withβ= 10 achieves superior performance by predicting multiple mechanisms capable of generating paths that closely approximate the desired input path. This study also builds a publicly available database of over 5 million paths and their corresponding RSCR mechanisms. The database provides a solid foundation for training deep learning models. An application in the design of human upper-limb rehabilitation mechanism is presented. Several RSCR mechanisms closely matching the wrist and elbow path collected from human movements are found using our deep learning models. This application underscores the potential of RSCR mechanisms and the effectiveness of our model in addressing complex, real-world spatial mechanism design problems.  more » « less
Award ID(s):
2126882
PAR ID:
10635251
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Frontiers of Mechanical Engineering
Volume:
20
Issue:
2
ISSN:
2095-0233
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This article introduces a novel methodology based on conditional β-variational autoencoder (cβ-VAE) architecture to generate diverse types of planar four-bar mechanisms for a given coupler curve. Central to our contribution is the novel integration of cross- and self-attention layers within the VAE framework, facilitating an encoding and decoding process that captures the complex interdependencies of mechanism parameters and associated coupler curves. We propose a unified representation scheme for four-bar mechanisms with both revolute and prismatic joints, utilizing a consistent set of joints to describe each mechanism type. To support and validate our methodology, we have compiled an extensive dataset featuring both open and closed coupler curves of the aforementioned mechanism types. Furthermore, the article introduces three metrics aimed at quantifying the efficacy of our model, alongside an innovative algorithm designed to enhance the predictive outcomes by identifying and computing cognate mechanisms. 
    more » « less
  2. Abstract This paper focuses on the representation and synthesis of coupler curves of planar mechanisms using a deep neural network. While the path synthesis of planar mechanisms is not a new problem, the effective representation of coupler curves in the context of neural networks has not been fully explored. This study compares four commonly used features or representations of four-bar coupler curves: Fourier descriptors, wavelets, point coordinates, and images. The results demonstrate that these diverse representations can be unified using a generative AI framework called variational autoencoder (VAE). This study shows that a VAE can provide a standalone representation of a coupler curve, regardless of the input representation, and that the compact latent dimensions of the VAE can be used to describe coupler curves of four-bar linkages. Additionally, a new approach that utilizes a VAE in conjunction with a fully connected neural network to generate dimensional parameters of four-bar linkage mechanisms is proposed. This research presents a novel opportunity for the automated conceptual design of mechanisms for robots and machines. 
    more » « less
  3. The approximate path synthesis of four-bar linkages with symmetric coupler curves is presented. This includes the formulation of a polynomial optimization problem, a characterization of the maximum number of critical points, a complete numerical solution by homotopy continuation, and application to the design of straight line generators. Our approach specifies a desired curve and finds several optimal four-bar linkages with a coupler trace that approximates it. The objective posed simultaneously enforces kinematic accuracy, loop closure, and leads to polynomial first order necessary conditions with a structure that remains the same for any desired trace leading to a generalized result. Ground pivot locations are set as chosen parameters, and it is shown that the objective has a maximum of 73 critical points. The theoretical work is applied to the design of straight line paths. Parameter homotopy runs are executed for 1440 different choices of ground pivots for a thorough exploration. These computations found the expected linkages, namely, Watt, Evans, Roberts, Chebyshev, and other previously unreported linkages which are organized into a 2D atlas using the UMAP algorithm. 
    more » « less
  4. Abstract In recent years, there has been a strong interest in applying machine learning techniques to path synthesis of linkage mechanisms. However, progress has been stymied due to a scarcity of high-quality datasets. In this article, we present a comprehensive dataset comprising nearly three million samples of 4-, 6-, and 8-bar linkage mechanisms with open and closed coupler curves. Current machine learning approaches to path synthesis also lack standardized metrics for evaluating outcomes. To address this gap, we propose six key metrics to quantify results, providing a foundational framework for researchers to compare new models with existing ones. We also present a variational autoencoder-based model in conjunction with a k-nearest neighbor search approach to demonstrate the utility of our dataset. In the end, we provide example mechanisms that generate various curves along with a numerical evaluation of the proposed metrics. 
    more » « less
  5. Abstract This paper presents a novel real-time kinematic simulation algorithm for planar N-bar linkage mechanisms, both single- and multi-degrees-of-freedom, comprising revolute and/or prismatic joints and actuators. A key feature of this algorithm is a reinterpretation technique that transforms prismatic elements into a combination of revolute joint and links. This gives rise to a unified system of geometric constraints and a general-purpose solver which adapts to the complexity of the mechanism. The solver requires only two types of methods—fast dyadic decomposition and relatively slower optimization-based—to simulate all types of planar mechanisms. From an implementation point of view, this algorithm simplifies programming without requiring handling of different types of mechanisms. This versatile algorithm can handle serial, parallel, and hybrid planar mechanisms with varying degrees-of-freedom and joint types. Additionally, this paper presents an estimation of simulation time and structural complexity, shedding light on computational demands. Demonstrative examples showcase the practicality of this method. 
    more » « less