skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 3, 2026

Title: The elusive sex: satellite tracking contributions to male sea turtle spatial ecology
Satellite tracking has revolutionized our understanding of the behavior and ecology of sea turtles. However, most satellite tracking of sea turtles has been performed on breeding females, leaving knowledge gaps with regard to males. To inform future studies, we examined the peer-reviewed literature to summarize the contribution that satellite tracking has made to the spatial ecology of male turtles and describe how the published research varies across time, species, life stages, seasonal cycle phases, regions, and research topics. We systematically reviewed 61 publications reporting tracking of male sea turtles across 6 species. Loggerheads emerged as the most studied species, featuring in 49% of the publications, with green turtles and loggerheads having the highest number of tracked males. The North Atlantic was the most represented region (39% of publications), followed by the Mediterranean (29%). Most tracking of males has been undertaken at foraging areas (77%), often providing information on home range residency. This is followed by migration publications (44%), which have revealed differences among populations and between sexes, with the breeding period being the least studied. We highlight differences in the spatial ecology of males and females (e.g. residency in breeding areas and migration distance) and identified unanswered research questions about male sea turtles. To overcome the lack of knowledge about this important demographic group, efforts should be undertaken to increase the sample size and geographic coverage of tracked males, with special focus on flatback and Kemp’s ridleys, as well as studies in the Indian and Pacific Oceans.  more » « less
Award ID(s):
1904818
PAR ID:
10635273
Author(s) / Creator(s):
; ;
Publisher / Repository:
NA
Date Published:
Journal Name:
Endangered Species Research
Volume:
57
ISSN:
1863-5407
Page Range / eLocation ID:
273 to 287
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Small populations of imperiled species are susceptible to the negative consequences of skewed sex‐ratios. In imperiled species with environmental sex determination such as sea turtles, examining sex ratios across a range of environments and population abundance levels can provide insight into factors that influence population resilience, which can then be the foci of management plans for these species. Breeding sex ratios (the ratio of actively breeding males to females during a reproductive season; BSRs) extrapolated from genetic parentage analyses are a common approach for enumerating sex ratios in sea turtles. Such analyses also allow for the characterization of multiple paternity within sea turtle clutches, which should reflect BSRs and breeding behaviors. We characterized the first BSR for a breeding assemblage of loggerhead sea turtles (Caretta caretta) belonging to the temperate, low‐abundance Northern Gulf of Mexico Recovery Unit using genotypes of 16 microsatellite loci from nesting females and hatchlings. Unlike prior studies at both more‐tropical and more‐temperate, and higher‐abundance, Recovery Units in this region, we found a balanced BSR of 1.3:1 males:female and a low incidence (~17%) of multiple paternity. This suggests that there are relatively few males breeding at this assemblage and within this Recovery Unit. Beaches in this region are expected to produce substantial numbers of male hatchlings based on sand temperature data. The relative dearth of mature males may then be due to hydrologic disturbances that disproportionately affect the fitness and survival of male hatchlings, or due to demographic stochasticity. More work is needed to study the factors that might influence male hatchling production and fitness in this region, particularly as climate change is predicted to lead to feminization in global sea turtle populations. Our work demonstrates the broad utility of characterizing BSRs and other sex ratios across a range of populations in imperiled, environmentally sensitive species. 
    more » « less
  2. null (Ed.)
    Male–male contest behavior can contribute to spatial distributions of male pinnipeds during breeding seasons. To maximize breeding opportunities, the most competitive males would be expected to be surrounded by the highest numbers of reproductive‐age females. As information regarding fine‐scale spatial ecology of Weddell seals is lacking, we performed an exploratory study using kernel density analyses to evaluate age‐specific habitat use of male Weddell seals in Erebus Bay, Antarctica. Additionally, we investigated the relationship between age and number of surrounding reproductive‐age females using a competing set of regression models in a Bayesian framework that considered different functional forms of age while incorporating individual heterogeneity. As male adult Weddell seals aged, to at least 20 years, they were more likely to be found in areas associated with the greatest densities of reproductive‐age females, but individual heterogeneity also influenced the number of reproductive‐age female neighbors. The youngest males tended to haul out in offshore areas associated with better hunting, and older males tended to settle in more nearshore areas associated with more pup production. Our findings from this preliminary investigation indicate that male Weddell seal spatial behavior during the breeding season varies with age and individual and might be related to reproductive activity. 
    more » « less
  3. Sexual selection arising from sperm competition has driven the evolution of immense variation in ejaculate allocation and sperm characteristics not only among species, but also among males within a species. One question that has received little attention is how cooperation among males affects these patterns. Here we ask how male alternative reproductive types differ in testes size, ejaculate production, and sperm morphology in the ocellated wrasse, a marine fish in which unrelated males cooperate and compete during reproduction. Nesting males build nests, court females and provide care. Sneaker males only “sneak” spawn, while satellite males sneak, but also help by chasing away sneakers. We found that satellite males have larger absolute testes than either sneakers or nesting males, despite their cooperative role. Nesting males invested relatively less in testes than either sneakers or satellites. Though sneakers produced smaller ejaculates than either satellite or nesting males, we found no difference among male types in either sperm cell concentration or sperm number, implying sneakers may produce less seminal fluid. Sperm tail length did not differ significantly among male types, but sneaker sperm cells had significantly larger heads than either satellite or nesting male sperm, consistent with past research showing sneakers produce slower sperm. Our results highlight that social interactions among males can influence sperm and ejaculate production. 
    more » « less
  4. Abstract Male–male competition is a well-known driver of reproductive success and sexually selected traits in many species. However, in some species, males work together to court females or defend territories against male competitors. Dominant (nesting) males sire most offspring, but subordinate (satellite) males are better able to obtain fertilizations relative to unpartnered males. Because satellites only gain reproductive success by sneaking, there has been much interest in identifying the mechanisms enforcing satellite cooperation (defense) and reducing satellite sneaking. One such potential mechanism is outside competition: unpartnered satellites can destabilize established male partnerships and may force partnered satellites to restrain from cheating to prevent the dominant male from replacing them with an unpartnered satellite. Here, we manipulated perceived competition in the Mediterranean fish Symphodus ocellatus by presenting an “intruding” satellite male to established nesting and satellite male pairs. Focal satellite aggression to the intruder was higher when focal satellites were less cooperative, suggesting that satellites increase aggression to outside competitors when their social position is less stable. In contrast, nesting male aggression to the intruder satellite increased as spawning activity increased, suggesting that nesting males increase their defense toward outside competitors when their current relationship is productive. We found no evidence of altered spawning activity or nesting/satellite male interactions before and after the presentation. These results collectively suggest that response to outside competition is directly linked to behavioral dynamics between unrelated male partners and may be linked to conflict and cooperation in ways that are similar to group-living species. 
    more » « less
  5. From deer antlers to crab claws, weapons are some of the most elaborate and enormous structures in the animal kingdom. Within a species, weapon size generally increases with the size and condition of an individual, and those with larger weapons are usually better at fending off more diminutive competitors. Although it may seem desirable for all individuals to have large weapons, size varies greatly within a species. The ‘handicap principle’ proposes that the cost of bearing a weapon dictates the variation in weapon size. Smaller or less fit individuals pay more for weapons than larger or fitter animals, so smaller individuals tend to grow smaller weapons. Although popular, only a handful of studies have demonstrated experimental evidence that supports this theory. To test the handicap principle, Dinh and Patek studied a group of crustaceans known as snapping shrimp. Each shrimp has one enlarged claw that it uses as a weapon to fire imploding vapor bubbles at opponents during fights. Larger snapping shrimp have bigger enlarged claws and tend to win more contests. Males also have larger weapons than females, and this sex difference is amplified during the breeding season. Dinh and Patek studied weapon size in several species of snapping shrimp. Measurements showed that after controlling for body size, individuals with larger weapons had smaller abdomens, suggesting there is a tradeoff between weapon size and abdomen size. Furthermore, small males exhibited the steepest tradeoff, in line with the handicap principle. Snapping shrimp also showed sex-specific costs and benefits. After controlling for body size, females with larger weapons produced fewer and smaller eggs, while males with larger weapons were more likely to be paired with females and generally paired with larger females. This suggests that weapons are particularly burdensome to female shrimp and particularly beneficial to males, especially during the breeding season. These findings provide elusive evidence for the handicap principle and extend the theory to explain sex and seasonal differences in the size of snapping shrimp weapons. More broadly, the findings highlight the value of studying both male and female animal weapons when, historically, the focus has been on male weaponry. 
    more » « less