skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 1, 2026

Title: A semi-analytic estimate for the effective sound speed counterterm in the EFTofLSS
Abstract The Effective Field Theory of Large Scale Structure (EFTofLSS) has found tremendous success as a perturbative framework for the evolution of large scale structure, and it is now routinely used to compare theoretical predictions against cosmological observations. The model for the total matter field includes one nuisance parameter at 1-loop order, the effective sound speed, which can be extracted by matching the EFT to full N-body simulations. In this work we first leverage the Layzer-Irvine cosmic energy equation to show that the equation of state can be exactly computed with knowledge of the fully nonlinear power spectrum. When augmented with separate universe methods, we show one can estimate the effective sound speed. This estimate is in good agreement with simulation results, with errors at the few tens of percent level. We apply our method to investigate the cosmology dependence of the effective sound speed and to shed light on what cosmic structures shape its value.  more » « less
Award ID(s):
2007012
PAR ID:
10635361
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
JCAP
Date Published:
Journal Name:
Journal of Cosmology and Astroparticle Physics
Volume:
2025
Issue:
02
ISSN:
1475-7516
Page Range / eLocation ID:
023
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT One of the most exciting advances of the current generation of telescopes has been the detection of galaxies during the epoch of reionization, using deep fields that have pushed these instruments to their limits. It is essential to optimize our analyses of these fields in order to extract as much information as possible from them. In particular, standard methods of measuring the galaxy luminosity function discard information on large-scale dark matter density fluctuations, even though this large-scale structure drives galaxy formation and reionization during the Cosmic Dawn. Measuring these densities would provide a bedrock observable, connecting galaxy surveys to theoretical models of the reionization process and structure formation. Here, we use existing Hubble deep field data to simultaneously fit the universal luminosity function and measure large-scale densities for each Hubble deep field at z = 6–8 by directly incorporating priors on the large-scale density field and galaxy bias. Our fit of the universal luminosity function is consistent with previous methods but differs in the details. For the first time, we measure the underlying densities of the survey fields, including the most over/underdense Hubble fields. We show that the distribution of densities is consistent with current predictions for cosmic variance. This analysis on just 17 fields is a small sample of what will be possible with the James Webb Space Telescope, which will measure hundreds of fields at comparable (or better) depths and at higher redshifts. 
    more » « less
  2. We present a technique to measure the time-resolved velocity and ion sound speed in magnetized, supersonic high-energy-density plasmas. We place an inductive (“b-dot”) probe in a supersonic pulsed-power-driven plasma flow and measure the magnetic field advected by the plasma. As the magnetic Reynolds number is large (RM > 10), the plasma flow advects a magnetic field proportional to the current at the load. This enables us to estimate the flow velocity as a function of time from the delay between the current at the load and the signal at the probe. The supersonic flow also generates a hydrodynamic bow shock around the probe, the structure of which depends on the upstream sonic Mach number. By imaging the shock around the probe with a Mach–Zehnder interferometer, we determine the upstream Mach number from the shock Mach angle, which we then use to determine the ion sound speed from the known upstream velocity. We use the sound speed to infer the value of Z̄Te, where Z̄ is the average ionization and Te is the electron temperature. We use this diagnostic to measure the time-resolved velocity and sound speed of a supersonic (MS ∼ 8), super-Alfvénic (MA ∼ 2) aluminum plasma generated during the ablation stage of an exploding wire array on the Magpie generator (1.4 MA, 250 ns). The velocity and Z̄Te measurements agree well with the optical Thompson scattering measurements reported in the literature and with 3D resistive magnetohydrodynamic simulations in GORGON. 
    more » « less
  3. Abstract To understand the formation and evolution of massive cosmic structures, studying them at high redshift, in the epoch when they formed the majority of their mass, is essential. The One-hundred-deg2DECam Imaging in Narrowbands (ODIN) survey is undertaking the widest-area narrowband program to date, to use Lyα-emitting galaxies (LAEs) to trace the large-scale structure (LSS) of the Universe on the scale of 10–100 cMpc at three cosmic epochs. In this work, we present results atz= 3.1 based on early ODIN data in the COSMOS field. We identify protoclusters and cosmic filaments using multiple methods and discuss their strengths and weaknesses. We then compare our observations against the IllustrisTNG suite of cosmological hydrodynamical simulations. The two are in excellent agreement, identifying a similar number and angular size of structures above a specified density threshold. We successfully recover the simulated protoclusters with log(Mz=0/M) ≳ 14.4 in ∼60% of the cases. With these objects, we show that the descendant masses of our observed protoclusters can be estimated purely based on our 2D measurements, finding a medianz= 0 mass of ∼1014.5M. The lack of information on the radial extent of each protocluster introduces a ∼0.4 dex uncertainty in its descendant mass. Finally, we show that the recovery of the cosmic web in the vicinity of protoclusters is both efficient and accurate. The similarity of our observations and the simulations implies that our structure selection is likewise robust and efficient, demonstrating that LAEs are reliable tracers of the LSS. 
    more » « less
  4. Abstract A solid with larger sound speeds usually exhibits higher lattice thermal conductivity. Here, we report an exception that CuP2has a quite large mean sound speed of 4155 m s−1, comparable to GaAs, but single crystals show very low lattice thermal conductivity of about 4 W m−1K−1at room temperature, one order of magnitude smaller than GaAs. To understand such a puzzling thermal transport behavior, we have thoroughly investigated the atomic structures and lattice dynamics by combining neutron scattering techniques with first-principles simulations. This compound crystallizes in a layered structure where Cu atoms forming dimers are sandwiched in between P atomic networks. In this work, we reveal that Cu atomic dimers vibrate as a rattling mode with frequency around 11 meV, which is manifested to be remarkably anharmonic and strongly scatters acoustic phonons to achieve the low lattice thermal conductivity. 
    more » « less
  5. Abstract Unresolved temperature and salinity fluctuations interact with a nonlinear seawater equation of state to produce significant errors in the ocean model evaluation of the large‐scale density field. It is shown that the impact of temperature fluctuations dominates the impact of salinity fluctuations and that the error in density is, to leading order, proportional to the product of a subgrid‐scale temperature variance and a second derivative of the equation of state. Two parameterizations are proposed to correct the large‐scale density field: one deterministic and one stochastic. Free parameters in both parameterizations are fit using fine‐resolution model data. Both parameterizations are computationally efficient as they require only one additional evaluation of a nonlinear equation at each grid cell. A companion paper will discuss the climate impacts of the parameterizations proposed here. 
    more » « less