skip to main content


Title: Dimer rattling mode induced low thermal conductivity in an excellent acoustic conductor
Abstract

A solid with larger sound speeds usually exhibits higher lattice thermal conductivity. Here, we report an exception that CuP2has a quite large mean sound speed of 4155 m s−1, comparable to GaAs, but single crystals show very low lattice thermal conductivity of about 4 W m−1K−1at room temperature, one order of magnitude smaller than GaAs. To understand such a puzzling thermal transport behavior, we have thoroughly investigated the atomic structures and lattice dynamics by combining neutron scattering techniques with first-principles simulations. This compound crystallizes in a layered structure where Cu atoms forming dimers are sandwiched in between P atomic networks. In this work, we reveal that Cu atomic dimers vibrate as a rattling mode with frequency around 11 meV, which is manifested to be remarkably anharmonic and strongly scatters acoustic phonons to achieve the low lattice thermal conductivity.

 
more » « less
Award ID(s):
1720595
NSF-PAR ID:
10474913
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; « less
Publisher / Repository:
Nature
Date Published:
Journal Name:
Nature Communications
Volume:
11
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1.  
    more » « less
  2. Abstract

    An emerging chalcogenide perovskite, CaZrSe3, holds promise for energy conversion applications given its notable optical and electrical properties. However, knowledge of its thermal properties is extremely important, e.g. for potential thermoelectric applications, and has not been previously reported in detail. In this work, we examine and explain the lattice thermal transport mechanisms in CaZrSe3using density functional theory and Boltzmann transport calculations. We find the mean relaxation time to be extremely short corroborating an enhanced phonon–phonon scattering that annihilates phonon modes, and lowers thermal conductivity. In addition, strong anharmonicity in the perovskite crystal represented by the Grüneisen parameter predictions, and low phonon number density for the acoustic modes, results in the lattice thermal conductivity to be limited to 1.17 W m−1 K−1. The average phonon mean free path in the bulk CaZrSe3sample (N → ∞) is 138.1 nm and nanostructuring CaZrSe3sample to ~10 nm diminishes the thermal conductivity to 0.23 W m−1 K−1. We also find that p-type doping yields higher predictions of thermoelectric figure of merit than n-type doping, and values ofZT~0.95–1 are found for hole concentrations in the range 1016–1017 cm−3and temperature between 600 and 700 K.

     
    more » « less
  3. Abstract

    Lattice defects typically reduce lattice thermal conductivity, which has been widely exploited in applications such as thermoelectric energy conversion. Here, an anomalous dependence of the lattice thermal conductivity on point defects is demonstrated in epitaxial WO3thin films. Depending on the substrate, the lattice of epitaxial WO3expands or contracts as protons are intercalated by electrolyte gating or oxygen vacancies are introduced by adjusting growth conditions. Surprisingly, the observed lattice volume, instead of the defect concentration, plays the dominant role in determining the thermal conductivity. In particular, the thermal conductivity increases significantly with proton intercalation, which is contrary to the expectation that point defects typically lower the lattice thermal conductivity. The thermal conductivity can be dynamically varied by a factor of1.7 via electrolyte gating, and tuned over a larger range, from 7.8 to 1.1 W m−1K−1, by adjusting the oxygen pressure during film growth. The electrolyte‐gating‐induced changes in thermal conductivity and lattice dimensions are reversible through multiple cycles. These findings not only expand the basic understanding of thermal transport in complex oxides, but also provide a path to dynamically control the thermal conductivity.

     
    more » « less
  4. Abstract

    AMXcompounds with the ZrBeSi structure tolerate a vacancy concentration of up to 50 % on theM‐site in the planarMX‐layers. Here, we investigate the impact of vacancies on the thermal and electronic properties across the full EuCu1−xZn0.5xSb solid solution. The transition from a fully‐occupied honeycomb layer (EuCuSb) to one with a quarter of the atoms missing (EuZn0.5Sb) leads to non‐linear bond expansion in the honeycomb layer, increasing atomic displacement parameters on theMand Sb‐sites, and significant lattice softening. This, combined with a rapid increase in point defect scattering, causes the lattice thermal conductivity to decrease from 3 to 0.5 W mK−1at 300 K. The effect of vacancies on the electronic properties is more nuanced; we see a small increase in effective mass, large increase in band gap, and decrease in carrier concentration. Ultimately, the maximumzTincreases from 0.09 to 0.7 as we go from EuCuSb to EuZn0.5Sb.

     
    more » « less
  5. Abstract

    AMXcompounds with the ZrBeSi structure tolerate a vacancy concentration of up to 50 % on theM‐site in the planarMX‐layers. Here, we investigate the impact of vacancies on the thermal and electronic properties across the full EuCu1−xZn0.5xSb solid solution. The transition from a fully‐occupied honeycomb layer (EuCuSb) to one with a quarter of the atoms missing (EuZn0.5Sb) leads to non‐linear bond expansion in the honeycomb layer, increasing atomic displacement parameters on theMand Sb‐sites, and significant lattice softening. This, combined with a rapid increase in point defect scattering, causes the lattice thermal conductivity to decrease from 3 to 0.5 W mK−1at 300 K. The effect of vacancies on the electronic properties is more nuanced; we see a small increase in effective mass, large increase in band gap, and decrease in carrier concentration. Ultimately, the maximumzTincreases from 0.09 to 0.7 as we go from EuCuSb to EuZn0.5Sb.

     
    more » « less