Abstract Tidal disruption events (TDEs) are a class of transients that occur when a star is destroyed by the tides of a massive black hole (MBH). Their rates encode valuable MBH demographic information, but this can only be extracted if accurate TDE rate predictions are available for comparisons with observed rates. In this work, we present a new, observer-friendly Python package called REPTiDE, which implements a standard loss-cone model for computing TDE rates given a stellar density distribution and an MBH mass. We apply this software to a representative sample of 91 nearby galaxies over a wide range of stellar masses with high-resolution nuclear density measurements from C. H. Hannah et al. We measure per-galaxy TDE rates ranging between 10−7.7and 10−2.9yr–1and find that the sample-averaged rates agree well with observations. We find a turnover in the TDE rate as a function of both galaxy stellar mass and black hole mass, with the peak rates being observed in galaxies at a galaxy mass of 109.5M⊙and a black hole mass of 106.5M⊙. Despite the lower TDE rates inferred for intermediate-mass black holes, we find that they have gained a higher fraction of their mass through TDEs when compared to higher-mass black holes. This growth of lower-mass black holes through TDEs can enable us to place interesting constraints on their spins; we find maximum spins ofa• ≈ 0.9 for black holes with masses below ∼105.5M⊙.
more »
« less
This content will become publicly available on May 6, 2026
Little Red Dots Are Tidal Disruption Events in Runaway-collapsing Clusters
Abstract I hypothesize a physical explanation for the “little red dots” (LRDs) discovered by the James Webb Space Telescope (JWST). The first star formation in the Universe occurs in dense clusters, some of which may undergo runaway collapse and form an intermediate mass black hole. This process would appear as a very dense stellar system, with recurring tidal disruption events (TDEs) as stellar material is accreted by the black hole. Such a system would be compact, UV-emitting, and exhibit broad Hαemission. If runaway collapse is the primary mechanism for forming massive black hole seeds, this process could be fairly common and explain the large volume densities of LRDs. In order to match the predicted number density of runaway collapse clusters, the tidal disruption rate must be on the order of 10−4per year. A top-heavy stellar initial mass function may be required to match observations without exceeding the predicted ΛCDM mass function. The TDE LRD hypothesis can be verified with follow-up JWST observations looking for TDE-like variability.
more »
« less
- Award ID(s):
- 2107764
- PAR ID:
- 10635363
- Publisher / Repository:
- Astrophysical Journal Letters
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 984
- Issue:
- 2
- ISSN:
- 2041-8205
- Page Range / eLocation ID:
- L55
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Intermediate-mass black holes (IMBHs) may be the link between stellar mass holes and the supermassive variety in the nuclei of galaxies, and globular clusters (GCs) may be one of the most promising environments for their formation. Here, we carry out a pilot study of the observability of tidal disruption events (TDEs) from 103M⊙<M•< 105M⊙IMBHs embedded in stellar cusps at the center of GCs. We model the long super-Eddington accretion phase and ensuing optical flare, and derive the disruption rate of main-sequence stars as a function of black hole mass and GC properties with the help of a 1D Fokker–Planck approach. The photospheric emission of the adiabatically expanding outflow dominates the observable radiation and peaks in the near-ultraviolet/optical bands, outshining the brightness of the (old) stellar population of GCs in Virgo for a period of months to years. A search for TDE events in a sample of nearly 4000 GCs observed at multiple epochs by the Next Generation Virgo Cluster Survey yields null results. Given our model predictions, this sample is too small to set stringent constraints on the present-day occupation fraction of GCs hosting IMBHs. Naturally, better simulations of the properties of the cluster central stellar distribution, TDE light curves, and rates, together with larger surveys of GCs are all needed to gain deeper insights into the presence of IMBHs in GCs.more » « less
-
Abstract Tidal disruption events (TDEs) are among the brightest transients in the optical, ultraviolet, and X-ray sky. These flares are set into motion when a star is torn apart by the tidal field of a massive black hole, triggering a chain of events which is – so far – incompletely understood. However, the disruption process has been studied extensively for almost half a century, and unlike the later stages of a TDE, our understanding of the disruption itself is reasonably well converged. In this Chapter, we review both analytical and numerical models for stellar tidal disruption. Starting with relatively simple, order-of-magnitude physics, we review models of increasing sophistication, the semi-analytic “affine formalism,” hydrodynamic simulations of the disruption of polytropic stars, and the most recent hydrodynamic results concerning the disruption of realistic stellar models. Our review surveys the immediate aftermath of disruption in both typical and more unusual TDEs, exploring how the fate of the tidal debris changes if one considers non-main sequence stars, deeply penetrating tidal encounters, binary star systems, and sub-parabolic orbits. The stellar tidal disruption process provides the initial conditions needed to model the formation of accretion flows around quiescent massive black holes, and in some cases may also lead to directly observable emission, for example via shock breakout, gravitational waves or runaway nuclear fusion in deeply plunging TDEs.more » « less
-
Abstract Nuclear star clusters (NSCs), made up of a dense concentration of stars and the compact objects they leave behind, are ubiquitous in the central regions of galaxies surrounding the central supermassive black hole (SMBH). Close interactions between stars and stellar-mass black holes (sBHs) lead to tidal disruption events (TDEs). We uncover an interesting new phenomenon: for a subset of these, the unbound debris (to the sBH) remains bound to the SMBH, accreting at a later time, thus giving rise to a second flare. We compute the rate of such events and find them ranging within 10−6–10−3yr−1gal−1for SMBH mass ≃106–109M⊙. Time delays between the two flares spread over a wide range, from less than a year to hundreds of years. The temporal evolution of the light curves of the second flare can vary between the standardt−5/3power law to much steeper decays, providing a natural explanation for observed light curves in tension with the classical TDE model. Our predictions have implications for learning about NSC properties and calibrating its sBH population. Some double flares may be electromagnetic counterparts to LISA extreme-mass-ratio inspiral sources. Another important implication is the possible existence of TDE-like events in very massive SMBHs, where TDEs are not expected. Such flares can affect spin measurements relying on TDEs in the upper SMBH range.more » « less
-
Aims.The scenario of feedback-free starbursts (FFB), which predicts excessively bright galaxies at cosmic dawn as observed using JWST, may provide a natural setting for black hole (BH) growth. This involves the formation of intermediate-mass seed BHs and their runaway mergers into super-massive BHs with high BH-to-stellar mass ratios and low Active Galactic Nucleus (AGN) luminosities. Methods.We present a scenario of merger-driven BH growth in FFB galaxies and study its feasibility. Results.Black hole seeds form within the building blocks of the FFB galaxies, namely, thousands of compact star clusters, each starbursting in a free-fall time of a few million years before the onset of stellar and supernova feedback. The BH seeds form by rapid core collapse in the FFB clusters, in a few free-fall times, which is sped up by the migration of massive stars due to the young, broad stellar mass function and stimulated by a “gravo-gyro” instability due to internal cluster rotation and flattening. BHs of ∼104 M⊙are expected in ∼106 M⊙FFB clusters within sub-kiloparsec galactic disks atz ∼ 10. The BHs then migrate to the galaxy center by dynamical friction, hastened by the compact FFB stellar galactic disk configuration. Efficient mergers of the BH seeds will produce ∼106 − 8 M⊙BHs with a BH-to-stellar mass ratio ∼0.01 byz ∼ 4 − 7, as observed. The growth of the central BH by mergers can overcome the bottleneck introduced by gravitational wave recoils if the BHs inspiral within a relatively cold disk or if the escape velocity from the galaxy is boosted by a wet compaction event. Such events, common in massive galaxies at high redshifts, can also help by speeding up the inward BH migration and by providing central gas to assist with the final parsec problem. Conclusions.The cold disk version of the FFB scenario provides a feasible route for the formation of supermassive BHs.more » « less
An official website of the United States government
