Abstract Topological spin/polarization structures in ferroic materials continue to draw great attention as a result of their fascinating physical behaviors and promising applications in the field of high‐density nonvolatile memories as well as future energy‐efficient nanoelectronic and spintronic devices. Such developments have been made, in part, based on recent advances in theoretical calculations, the synthesis of high‐quality thin films, and the characterization of their emergent phenomena and exotic phases. Herein, progress over the last decade in the study of topological structures in ferroic thin films and heterostructures is explored, including the observation of topological structures and control of their structures and emergent physical phenomena through epitaxial strain, layer thickness, electric, magnetic fields, etc. First, the evolution of topological spin structures (e.g., magnetic skyrmions) and associated functionalities (e.g., topological Hall effect) in magnetic thin films and heterostructures is discussed. Then, the exotic polar topologies (e.g., domain walls, closure domains, polar vortices, bubble domains, and polar skyrmions) and their emergent physical properties in ferroelectric oxide films and heterostructures are explored. Finally, a brief overview and prospectus of how the field may evolve in the coming years is provided. 
                        more » 
                        « less   
                    This content will become publicly available on August 4, 2026
                            
                            Giant topological Hall effect across a wide temperature range in Pt/NiCo2O4 heterostructures
                        
                    
    
            The topological Hall effect (THE), a quantum phenomenon arising from the emergent magnetic field generated by a topological spin texture, is a key method for detecting non-coplanar spin structures like skyrmions in magnetic materials. Here, we investigate a bilayer structure of Pt and the conducting ferrimagnet NiCo2O4 (NCO) of perpendicular magnetic anisotropy and demonstrate a giant THE across a temperature range of 2–350 K. The absence of THE in a single-layer Pt and NCO, as well as in Pt/Cu/NCO, suggests its interfacial origin. The maximum THE occurring just before the NCO coercive field indicates its connection to magnetic nucleation centers, which are topologically equivalent to skyrmions. The large normalized THE, based on the emergent-field model, points to a high population density of small magnetic nucleation centers. This aligns with the seemingly unresolvable domain structures by the employed techniques during magnetization reversal, even though clear domain structures are detected after zero-field cooling. These results establish heavy metal/NCO as a promising system for exploring topological spin structures. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10635374
- Publisher / Repository:
- AIP Publishing
- Date Published:
- Journal Name:
- Applied Physics Letters
- Volume:
- 127
- Issue:
- 5
- ISSN:
- 0003-6951
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Herein, the experimental observation of micrometer‐scale magnetic skyrmions at room temperature in several Pt/Co‐based thin film heterostructures designed to possess low exchange stiffness, perpendicular magnetic anisotropy, and a modest interfacial Dzyaloshinskii–Moriya interaction (iDMI) is reported. It is found both experimentally and by micromagnetic and analytic modeling that a low exchange stiffness and modest iDMI eliminates the energetic penalty associated with forming domain walls in thin films. When the domain wall energy density approaches negative values, the remanent morphology transitions from a uniform state to labyrinthine stripes. A low exchange stiffness, indicated by a sub‐400 K Curie temperature, is achieved in Pt/Co, Pt/Co/Ni, and Pt/Co/Ni/Re structures by reducing the Co thickness to the ultrathin limit (<0.3 nm). Similar effects occur in thicker Pt/Co/NixCu1−xstructures when the Ni layer is alloyed with Cu. At this transition in domain morphology, skyrmion phases are stabilized by small (<1 mT), perpendicular magnetic fields, and skyrmion motion in response to spin–orbit torque is observed. While the temperature and thickness‐induced morphological phase transitions observed are similar to the well‐studied spin reorientation transition that occurs in the ultrathin limit, the underlying energy balances are substantially modified by the presence of an iDMI.more » « less
- 
            Abstract Topological spin textures (e.g., skyrmions) can be stabilized by interfacial Dzyaloshinskii‐Moriya interaction (DMI) in the magnetic multilayer, which has been intensively studied. Recently, Bloch‐type magnetic skyrmions stabilized by composition gradient‐induced DMI (g‐DMI) have been observed in 10‐nm thick CoPt single layer. However, magnetic anisotropy in gradient‐composition engineered CoPt (g‐CoPt) films is highly sensitive to both the relative Co/Pt composition and the film thickness, leading to a complex interplay with g‐DMI. The stability of skyrmions under the combined influence of magnetic anisotropy and g‐DMI is crucial yet remains poorly understood. Here, we condcut a systematic study on the characteristics of magnetic skyrmions as a function of gradient polarity and effective gradient (defined as gradient/thickness) in g‐CoPt single layers (thickness of 10–30 nm) using magnetic force microscopy (MFM), bulk magnetometry, and topological Hall effect measurements. Brillouin light scattering spectroscopy confirms that both the sign and magnitude of g‐DMI depend on the polarity and amplitude of the composition gradient in g‐CoPt films. MFM reveals that skyrmion size and density vary with g‐CoPt film thickness, gradient polarity, and applied magnetic field. An increased skyrmion density is observed in samples exhibiting higher magnetic anisotropy, in agreement with micromagnetic simulations and energy barrier calculations.more » « less
- 
            Noncentrosymmetric (NCS) materials feature an exciting array of functionalities such as nonlinear optical (NLO) responses and topological spin textures (skyrmions). While NLO materials and magnetic skyrmions display two different sets of physical properties, their design strategies are deeply connected in terms of atomic-scale precision, structural customization, and electronic tunability. Despite impressive progress in studying these systems separately, a joint road map for navigating the chemical principles for NCS materials remains elusive. This review unites two subtopics of NCS systems, NLO materials and magnetic skyrmions, offering a multifaceted narrative of how to translate the often-abstract fundamentals to the targeted functionalities while inviting innovative approaches from the community. We outline the design principles central to the desired properties by exemplifying relevant examples in the field. We supplement materials chemistry with pertinent electronic structures to demonstrate the power of the fundamentals to create systems integration relevant to foreseeable societal impacts in frequency-doubling instrumentation and spin-based electronics.more » « less
- 
            Pattern formation in spin systems with continuous-rotational symmetry (CRS) provides a powerful platform to study emergent complex magnetic phases and topological defects in condensed-matter physics. However, its understanding and correlation with unconventional magnetic order along with high-resolution nanoscale imaging are challenging. Here, we employ scanning nitrogen vacancy (NV) magnetometry to unveil the morphogenesis of spin cycloids at both the local and global scales within a single ferroelectric domain of (111)-oriented BiFeO3, which is a noncollinear antiferromagnet, resulting in formation of a glassy labyrinthine pattern. We find that the domains of locally oriented cycloids are interconnected by an array of topological defects and exhibit isotropic energy landscape predicted by first-principles calculations. We propose that the CRS of spin-cycloid propagation directions within the (111) drives the formation of the labyrinthine pattern and the associated topological defects such as antiferromagnetic skyrmions. Unexpectedly, reversing the as-grown ferroelectric polarization from [ ] to [111] produces a noncycloidal NV image contrast which could be attributed to either the emergence of a uniformly magnetized state or a reversal of the cycloid polarity. These findings highlight that (111)-oriented BiFeO3is not only important for studying the fascinating subject of pattern formation but could also be utilized as an ideal platform for integrating novel topological defects in the field of antiferromagnetic spintronics.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
