Graph analytics elicits insights from large graphs to inform critical decisions for business, safety and security. Several large-scale graph processing frameworks feature efficient runtime systems; however, they often provide programming models that are low-level and subtly different from each other. Therefore, end users can find implementation and specially optimization of graph analytics error-prone and time-consuming. This paper regards the abstract interface of the graph processing frameworks as the instruction set for graph analytics, and presents Grafs, a high-level declarative specification language for graph analytics and a synthesizer that automatically generates efficient code for five high-performance graph processing frameworks. It features novel semantics-preserving fusion transformations that optimize the specifications and reduce them to three primitives: reduction over paths, mapping over vertices and reduction over vertices. Reductions over paths are commonly calculated based on push or pull models that iteratively apply kernel functions at the vertices. This paper presents conditions, parametric in terms of the kernel functions, for the correctness and termination of the iterative models, and uses these conditions as specifications to automatically synthesize the kernel functions. Experimental results show that the generated code matches or outperforms handwritten code, and that fusion accelerates execution.
more »
« less
Simplifying debiased inference via automatic differentiation and probabilistic programming
Abstract We introduce an algorithm that simplifies the construction of efficient estimators, making them accessible to a broader audience. ‘Dimple’ takes as input computer code representing a parameter of interest and outputs an efficient estimator. Unlike standard approaches, it does not require users to derive a functional derivative known as the efficient influence function. Dimple avoids this task by applying automatic differentiation to the statistical functional of interest. Doing so requires expressing this functional as a composition of primitives satisfying a novel differentiability condition. Dimple also uses this composition to determine the nuisances it must estimate. In software, primitives can be implemented independently of one another and reused across different estimation problems. We provide a proof-of-concept Python implementation and showcase through examples how it allows users to go from parameter specification to efficient estimation with just a few lines of code.
more »
« less
- Award ID(s):
- 2210216
- PAR ID:
- 10635428
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Journal of the Royal Statistical Society Series B: Statistical Methodology
- ISSN:
- 1369-7412
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In some high-dimensional and semiparametric inference problems involving two populations, the parameter of interest can be characterized by two-sample U-statistics involving some nuisance parameters. In this work we first extend the framework of one-step estimation with cross-fitting to two-sample U-statistics, showing that using an orthogonalized influence function can effectively remove the first order bias, resulting in asymptotically normal estimates of the parameter of interest. As an example, we apply this method and theory to the problem of testing two-sample conditional distributions, also known as strong ignorability. When combined with a conformal-based rank-sum test, we discover that the nuisance parameters can be divided into two categories, where in one category the nuisance estimation accuracy does not affect the testing validity, whereas in the other the nuisance estimation accuracy must satisfy the usual requirement for the test to be valid. We believe these findings provide further insights into and enhance the conformal inference toolbox.more » « less
-
Abstract SummaryMolecular mechanisms of biological functions and disease processes are exceptionally complex, and our ability to interrogate and understand relationships is becoming increasingly dependent on the use of computational modeling. We have developed “BioModME,” a standalone R-based web application package, providing an intuitive and comprehensive graphical user interface to help investigators build, solve, visualize, and analyze computational models of complex biological systems. Some important features of the application package include multi-region system modeling, custom reaction rate laws and equations, unit conversion, model parameter estimation utilizing experimental data, and import and export of model information in the Systems Biology Matkup Language format. The users can also export models to MATLAB, R, and Python languages and the equations to LaTeX and Mathematical Markup Language formats. Other important features include an online model development platform, multi-modality visualization tool, and efficient numerical solvers for differential-algebraic equations and optimization. Availability and implementationAll relevant software information including documentation and tutorials can be found at https://mcw.marquette.edu/biomedical-engineering/computational-systems-biology-lab/biomodme.php. Deployed software can be accessed at https://biomodme.ctsi.mcw.edu/. Source code is freely available for download at https://github.com/MCWComputationalBiologyLab/BioModME.more » « less
-
Monitoring location updates from mobile users has important applications in many areas, ranging from public health (e.g., COVID-19 contact tracing) and national security to social networks and advertising. However, sensitive information can be derived from movement patterns, thus protecting the privacy of mobile users is a major concern. Users may only be willing to disclose their locations when some condition is met, for instance in proximity of a disaster area or an event of interest. Currently, such functionality can be achieved using searchable encryption. Such cryptographic primitives provide provable guarantees for privacy, and allow decryption only when the location satisfies some predicate. Nevertheless, they rely on expensive pairing-based cryptography (PBC), of which direct application to the domain of location updates leads to impractical solutions. We propose secure and efficient techniques for private processing of location updates that complement the use of PBC and lead to significant gains in performance by reducing the amount of required pairing operations. We implement two optimizations that further improve performance: materialization of results to expensive mathematical operations, and parallelization. We also propose an heuristic that brings down the computational overhead through enlarging an alert zone by a small factor (given as system parameter), therefore trading off a small and controlled amount of privacy for significant performance gains. Extensive experimental results show that the proposed techniques significantly improve performance compared to the baseline, and reduce the searchable encryption overhead to a level that is practical in a computing environment with reasonable resources, such as the cloud.more » « less
-
Monitoring location updates from mobile users has important applications in many areas, ranging from public health (e.g., COVID-19 contact tracing) and national security to social networks and advertising. However, sensitive information can be derived from movement patterns, thus protecting the privacy of mobile users is a major concern. Users may only be willing to disclose their locations when some condition is met, for instance in proximity of a disaster area or an event of interest. Currently, such functionality can be achieved using searchable encryption. Such cryptographic primitives provide provable guarantees for privacy, and allow decryption only when the location satisfies some predicate. Nevertheless, they rely on expensive pairing-based cryptography (PBC), of which direct application to the domain of location updates leads to impractical solutions. We propose secure and efficient techniques for private processing of location updates that complement the use of PBC and lead to significant gains in performance by reducing the amount of required pairing operations. We implement two optimizations that further improve performance: materialization of results to expensive mathematical operations, and parallelization. We also propose an heuristic that brings down the computational overhead through enlarging an alert zone by a small factor (given as system parameter), therefore trading off a small and controlled amount of privacy for significant performance gains. Extensive experimental results show that the proposed techniques significantly improve performance compared to the baseline, and reduce the searchable encryption overhead to a level that is practical in a computing environment with reasonable resources, such as the cloud.more » « less
An official website of the United States government
