skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Foresight 2035: a perspective on the next decade of research on the management of Legionella spp. in engineered aquatic environments
Abstract The disease burden from Legionella spp. infections has been increasing in many industrialized countries and, despite decades of scientific advances, ranks amongst the highest for waterborne diseases. We review here several key research areas from a multidisciplinary perspective and list critical research needs to address some of the challenges of Legionella spp. management in engineered environments. These include: (i) a consideration of Legionella species diversity and cooccurrence, beyond Legionella pneumophila only; (ii) an assessment of their environmental prevalence and clinical relevance, and how that may affect legislation, management, and intervention prioritization; (iii) a consideration of Legionella spp. sources, their definition and prioritization; (iv) the factors affecting Legionnaires’ disease seasonality, how they link to sources, Legionella spp. proliferation and ecology, and how these may be affected by climate change; (v) the challenge of saving energy in buildings while controlling Legionella spp. with high water temperatures and chemical disinfection; and (vi) the ecological interactions of Legionella spp. with other microbes, and their potential as a biological control strategy. Ultimately, we call for increased interdisciplinary collaboration between multiple research domains, as well as transdisciplinary engagement and collaboration across government, industry, and science as the way toward controlling and reducing Legionella-derived infections.  more » « less
Award ID(s):
2147106
PAR ID:
10635484
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Oxford
Date Published:
Journal Name:
FEMS Microbiology Reviews
Volume:
49
ISSN:
1574-6976
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Fungal contamination of drinking water distribution systems can impact water quality with implications for public health. We document an instance of Exophiala spp. biofilm contamination of customer taps in the Midwest United States following consumer complaints. Three samples of black biofilm were collected from customer taps in Ohio and then processed using next-generation DNA sequencing of the bacterial 16S and fungal ITS regions. Two samples with successful ITS sequencing were dominated by Exophiala spp., putatively identified as E. cancerae and E. lecanii-corni. Dominant bacterial phyla in samples included Proteobacteria, Bacteroidetes, Actinobacteria, and Acidobacteria. Bacterial composition varied substantially at the family and genus levels, and potentially pathogenic bacteria (i.e., Acinetobacter spp., Legionella spp., Mycobacterium spp., and Pseudomonas spp.) were detected. The potential for fungal contamination of drinking water distribution systems should be evaluated when biofilms are observed. 
    more » « less
  2. Abstract The Anthropocene has brought substantial change to ocean ecosystems, but whether this age will bring more or less marine disease is unknown. In recent years, the accelerating tempo of epizootic and zoonotic disease events has made it seem as if disease is on the rise. Is this apparent increase in disease due to increased observation and sampling effort, or to an actual rise in the abundance of parasites and pathogens? We examined the literature to track long‐term change in the abundance of two parasitic nematode genera with zoonotic potential:Anisakisspp. andPseudoterranovaspp. These anisakid nematodes cause the disease anisakidosis and are transmitted to humans in undercooked and raw marine seafood. A total of 123 papers published between 1967 and 2017 met our criteria for inclusion, from which we extracted 755 host–parasite–location–year combinations. Of these, 69.7% concernedAnisakisspp. and 30.3% focused onPseudoterranovaspp. Meta‐regression revealed an increase inAnisakisspp. abundance (average number of worms/fish) over a 53 year period from 1962 to 2015 and no significant change inPseudoterranovaspp. abundance over a 37 year period from 1978 to 2015. Standardizing changes to the period of 1978–2015, so that results are comparable between genera, we detected a significant 283‐fold increase inAnisakisspp. abundance and no change in the abundance ofPseudoterranovaspp. This increase inAnisakisspp. abundance may have implications for human health, marine mammal health, and fisheries profitability. 
    more » « less
  3. Elkins, Christopher A (Ed.)
    ABSTRACT Antibiotics are often used to treat severeVibrioinfections, with third-generation cephalosporins and tetracyclines combined or fluoroquinolones alone being recommended by the US Centers for Disease Control and Prevention. Increases in antibiotic resistance of both environmental and clinical vibrios are of concern; however, limited longitudinal data have been generated among environmental isolates to inform how resistance patterns may be changing over time. Hence, we evaluated long-term trends in antibiotic resistance of vibrios isolated from Chesapeake Bay waters (Maryland) across two 3-year sampling periods (2009–2012 and 2019–2022).Vibrio parahaemolyticus(n= 134) andVibrio vulnificus(n= 94) toxR-confirmed isolates were randomly selected from both sampling periods and tested for antimicrobial susceptibility against eight antibiotics using the Kirby-Bauer disk diffusion method. A high percentage (94%–96%) ofV. parahaemolyticusisolates from both sampling periods were resistant to ampicillin and only 2%–6% of these isolates expressed intermediate resistance or resistance to third-generation cephalosporins, amikacin, tetracycline, and trimethoprim-sulfamethoxazole. Even lower percentages of resistantV. vulnificusisolates were observed and those were mostly recovered from 2009 to 2012, however, the presence of multiple virulence factors was observed. The frequency of multi-drug resistance was relatively low (6%–8%) but included resistance against antibiotics used to treat severe vibriosis in adults and children. All isolates were susceptible to ciprofloxacin, a fluoroquinolone, indicating its sustained efficacy as a first-line agent in the treatment of severe vibriosis. Overall, our data indicate that antibiotic resistance patterns amongV. parahaemolyticusandV. vulnificusrecovered from the lower Chesapeake Bay have remained relatively stable since 2009.IMPORTANCEVibriospp. have historically been susceptible to most clinically relevant antibiotics; however, resistance and intermediate-resistance have been increasingly recorded in both environmental and clinical isolates. Our data showed that while the percentage of multi-drug resistance and resistance to antibiotics was relatively low and stable across time, someVibrioisolates displayed resistance and intermediate resistance to antibiotics typically used to treat severe vibriosis (e.g., third-generation cephalosporins, tetracyclines, sulfamethoxazole-trimethoprim, and aminoglycosides). Also, given the high case fatality rates observed withVibrio vulnificusinfections, the presence of multiple virulence factors in the tested isolates is concerning. Nevertheless, the continued susceptibility of all tested isolates against ciprofloxacin, a fluoroquinolone, is indicative of its use as an effective first-line treatment of severeVibriospp. infections stemming from exposure to Chesapeake Bay waters or contaminated seafood ingestion. 
    more » « less
  4. Abstract Disease is a key driver of community and ecosystem structure, especially when it strikes foundation species. In the widespread marine foundation species eelgrass (Zostera marina), outbreaks of wasting disease have caused large‐scale meadow collapse in the past, and the causative pathogen,Labyrinthula zosterae, is commonly found in meadows globally. Research to date has mainly focused on abiotic environmental drivers of seagrass wasting disease, but there is strong evidence from other systems that biotic interactions such as herbivory can facilitate plant diseases. How biotic interactions influence seagrass wasting disease in the field is unknown but is potentially important for understanding dynamics of this globally valuable and declining habitat. Here, we investigated links between epifaunal grazers and seagrass wasting disease using a latitudinal field study across 32 eelgrass meadows distributed from southeastern Alaska to southern California. From 2019 to 2021, we conducted annual surveys to assess eelgrass shoot density, morphology, epifauna community, and the prevalence and lesion area of wasting disease infections. We integrated field data with satellite measurements of sea surface temperature and used structural equation modeling to test the magnitude and direction of possible drivers of wasting disease. Our results show that grazing by small invertebrates was associated with a 29% increase in prevalence of wasting disease infections and that both the prevalence and lesion area of disease increased with total epifauna abundances. Furthermore, these relationships differed among taxa; disease levels increased with snail (Lacunaspp.) and idoteid isopod abundances but were not related to abundance of ampithoid amphipods. This field study across 23° of latitude suggests a prominent role for invertebrate consumers in facilitating disease outbreaks with potentially large impacts on coastal seagrass ecosystems. 
    more » « less
  5. Abstract Free‐living amoebae (FLA) serve as hosts for a variety of endosymbionts, which are microorganisms that reside and multiply within the FLA. Some of these endosymbionts pose a pathogenic threat to humans, animals, or both. The symbiotic relationship with FLA not only offers these microorganisms protection but also enhances their survival outside their hosts and assists in their dispersal across diverse habitats, thereby escalating disease transmission. This review is intended to offer an exhaustive overview of the existing mathematical models that have been applied to understand the dynamics of FLA, especially concerning their interactions with bacteria. An extensive literature review was conducted across Google Scholar, PubMed, and Scopus databases to identify mathematical models that describe the dynamics of interactions between FLA and bacteria, as published in peer‐reviewed scientific journals. The literature search revealed several FLA–bacteria model systems, includingPseudomonas aeruginosa,Pasteurella multocida, andLegionellaspp. Although the published mathematical models account for significant system dynamics such as predator–prey relationships and non‐linear growth rates, they generally overlook spatial and temporal heterogeneity in environmental conditions, such as temperature, and population diversity. Future mathematical models will need to incorporate these factors to enhance our understanding of FLA–bacteria dynamics and to provide valuable insights for future risk assessment and disease control measures. 
    more » « less