skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Case report: contamination of a drinking water distribution system by Exophiala -dominated biofilm in the Midwestern United States
ABSTRACT Fungal contamination of drinking water distribution systems can impact water quality with implications for public health. We document an instance of Exophiala spp. biofilm contamination of customer taps in the Midwest United States following consumer complaints. Three samples of black biofilm were collected from customer taps in Ohio and then processed using next-generation DNA sequencing of the bacterial 16S and fungal ITS regions. Two samples with successful ITS sequencing were dominated by Exophiala spp., putatively identified as E. cancerae and E. lecanii-corni. Dominant bacterial phyla in samples included Proteobacteria, Bacteroidetes, Actinobacteria, and Acidobacteria. Bacterial composition varied substantially at the family and genus levels, and potentially pathogenic bacteria (i.e., Acinetobacter spp., Legionella spp., Mycobacterium spp., and Pseudomonas spp.) were detected. The potential for fungal contamination of drinking water distribution systems should be evaluated when biofilms are observed.  more » « less
Award ID(s):
1942501
PAR ID:
10570790
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.2166
Date Published:
Journal Name:
Journal of Water and Health
Volume:
23
Issue:
3
ISSN:
1477-8920
Format(s):
Medium: X Size: p. 314-321
Size(s):
p. 314-321
Sponsoring Org:
National Science Foundation
More Like this
  1. In communities where people lack on-demand, safely managed drinking water, stored household water often becomes contaminated by fecal bacteria, regardless of the source-water quality. The objectives of this paper are to assess and control bacterial contamination in stored household water in Toamasina, a rapidly urbanizing city in eastern coastal Madagascar. We collected samples of source water and stored household water from 10 representative households that use different water sources and different storage strategies, and we analyzed the samples for several fecal indicator bacteria. We also tested three methods that residents of Toamasina could realistically employ for cleaning their household water storage vessels, assessing the effect of the cleaning methods on measured bacterial levels in the water. Consistent with the previous literature, we found that concentrations of total coliforms in stored household water were significantly higher than in the corresponding source water (p < 0.05). In 100% of households that stored their water in 20 L polyethylene jerrycans (n = 4), biofilms on the walls of the jerrycan harbored total coliforms and Enterococcus. The use of a closed storage container was, on its own, not found to provide a meaningful protective effect against bacterial regrowth; to be protective, closed storage containers must be combined with high-quality source water and/or with adequate cleaning to prevent biofilm formation. A dilute solution of sodium hypochlorite, known locally as Sûr’Eau or Manadio Rano, was both the most effective and the least expensive method for cleaning household water storage containers. We conclude that regular and effective cleaning of storage containers is an essential component of safe water storage. Because household storage of collected water is common in many low- and middle-income countries, these results are important towards the worldwide achievement of the United Nations’ Sustainable Development Goal 6. 
    more » « less
  2. Morels ( Morchella spp.) are iconic edible mushrooms with a long history of human consumption. Some microbial taxa are hypothesized to be important in triggering the formation of morel primordia and development of fruiting bodies, thus, there is interest in the microbial ecology of these fungi. To identify and compare fungal and prokaryotic communities in soils where Morchella sextelata is cultivated in outdoor greenhouses, ITS and 16S rDNA high throughput amplicon sequencing and microbiome analyses were performed. Pedobacter , Pseudomonas , Stenotrophomonas , and Flavobacterium were found to comprise the core microbiome of M. sextelata ascocarps. These bacterial taxa were also abundant in the soil beneath growing fruiting bodies. A total of 29 bacterial taxa were found to be statistically associated to Morchella fruiting bodies. Bacterial community network analysis revealed high modularity with some 16S rDNA operational taxonomic unit clusters living in specialized fungal niches (e.g., pileus, stipe). Other fungi dominating the soil mycobiome beneath morels included Morchella , Phialophora , and Mortierella . This research informs understanding of microbial indicators and potential facilitators of Morchella ecology and fruiting body production. 
    more » « less
  3. Abstract Biofilms can increase pathogenic contamination of drinking water, cause biofilm‐related diseases, alter the sediment erosion rate, and degrade contaminants in wastewater. Compared with mature biofilms, biofilms in the early‐stage have been shown to be more susceptible to antimicrobials and easier to remove. Mechanistic understanding of physical factors controlling early‐stage biofilm growth is critical to predict and control biofilm development, yet such understanding is currently incomplete. Here, we reveal the impacts of hydrodynamic conditions and microscale surface roughness on the development of early‐stagePseudomonas putidabiofilm through a combination of microfluidic experiments, numerical simulations, and fluid mechanics theories. We demonstrate that early‐stage biofilm growth is suppressed under high flow conditions and that the local velocity for early‐stageP. putidabiofilms (growth time < 14 h) to develop is about 50 μm/s, which is similar toP. putida's swimming speed. We further illustrate that microscale surface roughness promotes the growth of early‐stage biofilms by increasing the area of the low‐flow region. Furthermore, we show that the critical average shear stress, above which early‐stage biofilms cease to form, is 0.9 Pa for rough surfaces, three times as large as the value for flat or smooth surfaces (0.3 Pa). The important control of flow conditions and microscale surface roughness on early‐stage biofilm development, characterized in this study, will facilitate future predictions and managements of early‐stageP. putidabiofilm development on the surfaces of drinking water pipelines, bioreactors, and sediments in aquatic environments. 
    more » « less
  4. null (Ed.)
    Antimicrobial resistance is a well-documented public health concern. The role that drinking water distribution pipes have as sources of antibiotic resistance genes (ARGs) is not well known. Metals are a known stressor for antibiotic resistance development, implying that aging metal-pipe infrastructure could be a source of ARGs. The objective of this study was to determine if ARGs, metal resistance genes (MRGs), and intI 1 were pervasive across various pipe biofilm sample types (biomass surfaces, pipe surfaces, corrosion tubercles, and under corrosion tubercles) and if the resistance genes associated with particular microbial taxa. Eight sample types in triplicate ( n = 24) were taken from inside a >100 year-old, six ft. section of a full-scale chloraminated cast iron drinking water main. Droplet digital PCR (ddPCR) was employed as a novel approach to quantify ARGs in pipes from full-scale drinking water distribution systems (DWDS) because it yielded higher detection frequencies than quantitative PCR (qPCR). Illumina sequencing was employed to characterize the microbial community based on 16S rRNA genes. ARGs and MRGs were detected in all 24 pipe samples. Every sample contained targeted genes. Interestingly, the mean absolute abundances of ARGs and MRGs only varied by approximately one log value across sample types, but the mean relative abundances (copy numbers normalized to 16S rRNA genes) varied by over two log values. The ARG and MRGs concentrations were not significantly different between sample types, despite significant changes in dominant microbial taxa. The most abundant genera observed in the biofilm communities were Mycobacterium (0.2–70%), and β-lactam resistance genes bla TEM , bla SHV , and the integrase gene of class 1 integrons ( intI 1) were positively correlated with Mycobacterium . The detection of ARGs, MRGs, and class 1 integrons across all sample types within the pipe indicates that pipes themselves can serve as sources for ARGs in DWDS. Consequently, future work should investigate the role of pipe materials as well as corrosion inhibitors to determine how engineering decisions can mitigate ARGs in drinking water that stem from pipe materials. 
    more » « less
  5. Abstract Nontraditional irrigation water sources (e.g., recycled water, brackish water) may harbor human pathogens, includingVibriospp., that could be present in a viable-but-nonculturable (VBNC) state, stymieing current culture-based detection methods. To overcome this challenge, we coupled 5-bromo-2′-deoxyuridine (BrdU) labeling, enrichment techniques, and 16S rRNA sequencing to identify metabolically-activeVibriospp.in nontraditional irrigation water (recycled water, pond water, non-tidal freshwater, and tidal brackish water). Our coupled BrdU-labeling and sequencing approach revealed the presence of metabolically-activeVibriospp. at all sampling sites. Whereas, the culture-based method only detected vibrios at three of the four sites. We observed the presence ofV. cholerae,V. vulnificus, andV. parahaemolyticususing both methods, whileV. aesturianusandV. shiloniiwere detected only through our labeling/sequencing approach. Multiple other pathogens of concern to human health were also identified through our labeling/sequencing approach includingP. shigelloides,B. cereusandE. cloacae. Most importantly, 16S rRNA sequencing of BrdU-labeled samples resulted inVibriospp. detection even when our culture-based methods resulted in negative detection. This suggests that our novel approach can effectively detect metabolically-activeVibriospp. that may have been present in a VBNC state, refining our understanding of the prevalence of vibrios in nontraditional irrigation waters. 
    more » « less