skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 1, 2026

Title: ParaValve: An open source framework for parametric design and fluid–structure interaction simulation of bioprosthetic heart valves in patient-specific aortic geometries
Heart valve disease (HVD), a significant cardiovascular complication, is one of the leading global causes of morbidity and mortality. Treatment for HVD often involves medical devices such as bioprosthetic valves. However, the design and optimization of these devices require a thorough understanding of their biomechanical and hemodynamic interactions with patient-specific anatomical structures. Parametric procedural geometry has become a powerful tool in enhancing the efficiency and accuracy of design optimization for such devices, allowing researchers to systematically explore a wide range of possible configurations. In this work, we present a robust framework for parametric and procedural modeling of stented bioprosthetic heart valves and patient-specific aortic geometries. The framework employs non-uniform rational B-splines (NURBS)-based geometric parameterization, enabling precise control over key anatomical and design variables. By enabling a modular and expandable workflow, the framework supports iterative optimization of valve designs to achieve improved hemodynamic performance and durability. We demonstrate its applicability through simulations on bioprosthetic aortic valves, highlighting the impact of geometric parameters on valve function and their potential for personalized device design. By coupling parametric geometry with computational tools, this framework offers researchers and engineers a streamlined pathway toward innovative and patient-specific cardiovascular solutions.  more » « less
Award ID(s):
2436623 2332264 2053760 2436624
PAR ID:
10635752
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Computer Aided Geometric Design
Volume:
120
ISSN:
0167-8396
Page Range / eLocation ID:
102455
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Left ventricular assist devices (LVADs) have been used for end-stage heart failure patients as a therapeutic option. The aortic valve plays a critical role in heart failure and its treatment with a LVAD. The cardiovascular-LVAD model is often used to investigate the physiological demands required by patients and predict the hemodynamic of the native heart supported with a LVAD. As it is a “ bridge-to-recovery ” treatment, it is important to maintain appropriate and active dynamics of the aortic valve and the cardiac output of the native heart, which requires that the LVAD pump be adjusted so that a proper balance between the blood contributed through the aortic valve and the pump is maintained. In this paper, we investigate how the pump power of the LVAD pump can affect the dynamic behaviors of the aortic valve for different levels of activity and different severities of heart failure. Our objective is to identify a critical value of the pump power (i.e., breakpoint ) to ensure that the LVAD pump does not take over the pumping function in the cardiovascular-pump system and share the ejected blood with the left ventricle to help the heart to recover. In addition, the hemodynamic often involves variability due to patients’ heterogeneity and the stochastic nature of the cardiovascular system. The variability poses significant challenges to understanding dynamic behaviors of the aortic valve and cardiac output. A generalized polynomial chaos (gPC) expansion is used in this work to develop a stochastic cardiovascular-pump model for efficient uncertainty propagation, from which it is possible to rapidly calculate the variance in the aortic valve opening duration and the cardiac output in the presence of variability. The simulation results show that the gPC-based cardiovascular-pump model is a reliable platform that can provide useful information to understand the effect of the LVAD pump on the hemodynamic of the heart. 
    more » « less
  2. Mechanical or biological aortic valves are incorporated in physical cardiac simulators for surgical training, educational purposes, and device testing. They suffer from limitations including either a lack of anatomical and biomechanical accuracy or a short lifespan, hence limiting the authentic hands-on learning experience. Medical schools utilize hearts from human cadavers for teaching and research, but these formaldehyde-fixed aortic valves contort and stiffen relative to native valves. Here, we compare a panel of different chemical treatment methods on explanted porcine aortic valves and evaluate the microscopic and macroscopic features of each treatment with a primary focus on mechanical function. A surfactant-based decellularization method after formaldehyde fixation is shown to have mechanical properties close to those of the native aortic valve. Valves treated in this method were integrated into a custom-built left heart cardiac simulator to test their hemodynamic performance. This decellularization, post-fixation technique produced aortic valves which have ultimate stress and elastic modulus in the range of the native leaflets. Decellularization of fixed valves reduced the valvular regurgitation by 60% compared to formaldehyde-fixed valves. This fixation method has implications for scenarios where the dynamic function of preserved valves is required, such as in surgical trainers or device test rigs. 
    more » « less
  3. Given the complexity of human left heart anatomy and valvular structures, the fluid–structure interaction (FSI) simulation of native and prosthetic valves poses a significant challenge for numerical methods. In this review, recent numerical advancements for both fluid and structural solvers for heart valves in patient-specific left hearts are systematically considered, emphasizing the numerical treatments of blood flow and valve surfaces, which are the most critical aspects for accurate simulations. Numerical methods for hemodynamics are considered under both the continuum and discrete (particle) approaches. The numerical treatments for the structural dynamics of aortic/mitral valves and FSI coupling methods between the solid Ωs and fluid domain Ωf are also reviewed. Future work toward more advanced patient-specific simulations is also discussed, including the fusion of high-fidelity simulation within vivo measurements and physics-based digital twining based on data analytics and machine learning techniques. 
    more » « less
  4. Pediatric heart valve disease affects children worldwide and necessitates valve replacements that remodel and grow with the patient. Current valve manufacturing technologies struggle to create valves that facilitate native tissue remodeling for permanent replacements. Here, we present focused rotary jet spinning (FRJS) for implantable medical devices, such as heart valves, to address this challenge. Combining RJS and a focused air stream, FRJS prints FibraValves, micro- and nanofibrous heart valves, in minutes. The micro- and nanoscale features provide structural cues to orient cells at the biotic-abiotic interface, while the centimeter-scale valve shape regulates cardiac flow. We built valves using poly(L-lactide-co-Ɛ-caprolactone) fiber scaffolds, which supported rapid cellular infiltration and displayed native valve-like mechanical properties. Evaluating clinical translatability, we assessed acute performance in a large animal model using a transcatheter delivery approach. These tests indicate that FRJS is a viable method for manufacturing heart valves and future medical implants. 
    more » « less
  5. Ghorbel, Mohamed; May-Newman, Karen (Ed.)
    Heart disease is a leading cause of mortality, with calcific aortic valve disease (CAVD) being the most prevalent subset. Being able to predict this disease in its early stages is important for monitoring patients before they need aortic valve replacement surgery. Thus, this study explored hydrodynamic, mechanical, and hemodynamic differences in healthy and very mildly calcified porcine small intestinal submucosa (PSIS) bioscaffold valves to determine any notable parameters between groups that could, possibly, be used for disease tracking purposes. Three valve groups were tested: raw PSIS as a control and two calcified groups that were seeded with human valvular interstitial and endothelial cells (VICs/VECs) and cultivated in calcifying media. These two calcified groups were cultured in either static or bioreactor-induced oscillatory flow conditions. Hydrodynamic assessments showed metrics were below thresholds associated for even mild calcification. Young’s modulus, however, was significantly higher in calcified valves when compared to raw PSIS, indicating the morphological changes to the tissue structure. Fluid–structure interaction (FSI) simulations agreed well with hydrodynamic results and, most notably, showed a significant increase in time-averaged wall shear stress (TAWSS) between raw and calcified groups. We conclude that tracking hemodynamics may be a viable biomarker for early-stage CAVD tracking. 
    more » « less