Venous valves are bicuspidal valves that ensure that blood in veins only flows back to the heart. To prevent retrograde blood flow, the two intraluminal leaflets meet in the center of the vein and occlude the vessel. In fluid‐structure interaction (FSI) simulations of venous valves, the large structural displacements may lead to mesh deteriorations and entanglements, causing instabilities of the solver and, consequently, the numerical solution to diverge. In this paper, we propose an arbitrary Lagrangian‐Eulerian (ALE) scheme for FSI simulations designed to solve these instabilities. A monolithic formulation for the FSI problem is considered, and due to the complexity of the operators, the exact Jacobian matrix is evaluated using automatic differentiation. The method relies on the introduction of a staggered in time velocity to improve stability, and on fictitious springs to model the contact force of the valve leaflets. Because the large structural displacements may compromise the quality of the fluid mesh as well, a smoother fluid displacement, obtained with the introduction of a scaling factor that measures the distance of a fluid element from the valve leaflet tip, guarantees that there are no mesh entanglements in the fluid domain. To further improve stability, a streamline upwind Petrov‐Galerkin (SUPG) method is employed. The proposed ALE scheme is applied to a two‐dimensional (2D) model of a venous valve. The presented simulations show that the proposed method deals well with the large structural displacements of the problem, allowing a reconstruction of the valve behavior in both the opening and closing phase.
- NSF-PAR ID:
- 10341868
- Date Published:
- Journal Name:
- Fluids
- Volume:
- 7
- Issue:
- 3
- ISSN:
- 2311-5521
- Page Range / eLocation ID:
- 94
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract A new general contact model is proposed for preventing inter‐leaflet penetration of bio‐prosthetic heart valves (BHV) at the end of the systole, which has the advantage of applying kinematic constraints directly and creating smooth free edges. At the end of each time step, the impenetrability constraints and momentum exchange between the impacting bodies are applied separately based on the coefficient of restitution. The contact method is implemented in a rotation‐free, large deformation, and thin shell finite‐element (FE) framework based on loop's subdivision surfaces. A nonlinear, anisotropic material model for a BHV is employed which uses Fung‐elastic constitutive laws for in‐plane and bending responses, respectively. The contact model is verified and validated against several benchmark problems. For a BHV‐specific validation, the computed strains on different regions of a BHV under constant pressure are compared with experimentally measured data. Finally, dynamic simulations of BHV under physiological pressure waveform are performed for symmetrical and asymmetrical fiber orientations incorporating the new contact model and compared with the penalty contact method. The proposed contact model provides the coaptation area of a functioning BHV during the closing phase for both of the fiber orientations. Our results show that fiber orientation affects the dynamic of leaflets during the opening and closing phases. A swirling motion for the BHV with asymmetrical fiber orientation is observed, similar to experimental data. To include the fluid effects, fluid–structure interaction (FSI) simulation of the BHV is performed and compared to the dynamic results.
-
Pediatric heart valve disease affects children worldwide and necessitates valve replacements that remodel and grow with the patient. Current valve manufacturing technologies struggle to create valves that facilitate native tissue remodeling for permanent replacements. Here, we present focused rotary jet spinning (FRJS) for implantable medical devices, such as heart valves, to address this challenge. Combining RJS and a focused air stream, FRJS prints FibraValves, micro- and nanofibrous heart valves, in minutes. The micro- and nanoscale features provide structural cues to orient cells at the biotic-abiotic interface, while the centimeter-scale valve shape regulates cardiac flow. We built valves using poly(L-lactide-co-Ɛ-caprolactone) fiber scaffolds, which supported rapid cellular infiltration and displayed native valve-like mechanical properties. Evaluating clinical translatability, we assessed acute performance in a large animal model using a transcatheter delivery approach. These tests indicate that FRJS is a viable method for manufacturing heart valves and future medical implants.more » « less
-
Faithful, accurate, and successful cardiac biomechanics and electrophysiological simulations require patient-specific geometric models of the heart. Since the cardiac geometry consists of highly-curved boundaries, the use of high-order meshes with curved elements would ensure that the various curves and features present in the cardiac geometry are well-captured and preserved in the corresponding mesh. Most other existing mesh generation techniques require computer-aided design files to represent the geometric boundary, which are often not available for biomedical applications. Unlike such methods, our technique takes a high-order surface mesh, generated from patient medical images, as input and generates a high-order volume mesh directly from the curved surface mesh. In this paper, we use our direct high-order curvilinear tetrahedral mesh generation method [1] to generate several second-order cardiac meshes. Our meshes include the left ventricle myocardia of a healthy heart and hearts with dilated and hypertrophic cardiomyopathy. We show that our high-order cardiac meshes do not contain inverted elements and are of sufficiently high quality for use in cardiac finite element simulations.more » « less
-
Abstract We present a novel formulation for the immersed coupling of isogeometric analysis and peridynamics for the simulation of fluid–structure interaction (FSI). We focus on air-blast FSI and address the computational challenges of immersed FSI methods in the simulation of fracture and fragmentation by developing a weakly volume-coupled FSI formulation by means of a simple penalty approach. We show the mathematical formulation and present several numerical examples of inelastic ductile and brittle solids under blast loading that clearly demonstrate the power and robustness of the proposed methodology.