We search for dark matter (DM) with a mass using an exposure of with the XENONnT experiment. We consider spin-independent DM-nucleon interactions mediated by a heavy or light mediator, spin-dependent DM-neutron interactions, momentum-dependent DM scattering, and mirror DM. Using a lowered energy threshold compared to the previous weakly interacting massive particle search, a blind analysis of [0.5, 5.0] keV nuclear recoil events reveals no significant signal excess over the background. XENONnT excludes spin-independent DM-nucleon cross sections at 90% confidence level for DM. In the considered mass range, the DM sensitivity approaches the “neutrino fog,” the limitation where neutrinos produce a signal that is indistinguishable from that of light DM-xenon nucleus scattering. Published by the American Physical Society2025 
                        more » 
                        « less   
                    This content will become publicly available on August 1, 2026
                            
                            Inclusive electron scattering in the resonance region off a hydrogen target with CLAS12
                        
                    
    
            Inclusive electron scattering cross sections off a hydrogen target at a beam energy of 10.6 GeV have been measured with data collected from the CLAS12 spectrometer at Jefferson Laboratory. These first absolute cross sections from CLAS12 cover a wide kinematic area in invariant mass of the final state hadrons from the pion threshold up to 2.5 GeV for each bin in virtual photon four-momentum transfer squared from 2.55 to owing to the large scattering angle acceptance of the CLAS12 detector. Comparison of the cross sections with the resonant contributions computed from the CLAS results on the nucleon resonance electroexcitation amplitudes has demonstrated a promising opportunity to extend the information on their evolution up to 10 . Together these results from CLAS and CLAS12 offer good prospects for probing the nucleon parton distributions at large fractional parton momenta for GeV, while covering the range of distances where the transition from the strongly coupled to the perturbative regimes is expected. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10635763
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Physical Review C
- Date Published:
- Journal Name:
- Physical Review C
- Volume:
- 112
- Issue:
- 2
- ISSN:
- 2469-9985
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We present a first study of the effects of renormalization-group resummation (RGR) and leading-renormalon resummation (LRR) on the systematic errors of the unpolarized isovector nucleon generalized parton distribution in the framework of large-momentum effective theory. This work is done using lattice gauge ensembles generated by the MILC Collaboration, consisting of flavors of highly improved staggered quarks with a physical pion mass at lattice spacing and a box width . We present results for the nucleon and generalized parton distributions (GPDs) with average boost momentum at momentum transfers at skewness as well as at , renormalized in the modified minimal subtraction ( ) scheme at scale , with two- and one-loop matching, respectively. We demonstrate that the simultaneous application of RGR and LRR significantly reduces the systematic errors in renormalized matrix elements and distributions for both the zero and nonzero skewness GPDs, and that it is necessary to include both RGR and LRR at higher orders in the matching and renormalization processes. Published by the American Physical Society2024more » « less
- 
            Abstract We report on a measurement of Spin Density Matrix Elements (SDMEs) in hard exclusive$$\rho ^0$$ meson muoproduction at COMPASS using 160 GeV/cpolarised$$ \mu ^{+}$$ and$$ \mu ^{-}$$ beams impinging on a liquid hydrogen target. The measurement covers the kinematic range 5.0 GeV/$$c^2$$ $$< W<$$ 17.0 GeV/$$c^2$$ , 1.0 (GeV/c)$$^2$$ $$< Q^2<$$ 10.0 (GeV/c)$$^2$$ and 0.01 (GeV/c)$$^2$$ $$< p_{\textrm{T}}^2<$$ 0.5 (GeV/c)$$^2$$ . Here,Wdenotes the mass of the final hadronic system,$$Q^2$$ the virtuality of the exchanged photon, and$$p_{\textrm{T}}$$ the transverse momentum of the$$\rho ^0$$ meson with respect to the virtual-photon direction. The measured non-zero SDMEs for the transitions of transversely polarised virtual photons to longitudinally polarised vector mesons ($$\gamma ^*_T \rightarrow V^{ }_L$$ ) indicate a violation ofs-channel helicity conservation. Additionally, we observe a dominant contribution of natural-parity-exchange transitions and a very small contribution of unnatural-parity-exchange transitions, which is compatible with zero within experimental uncertainties. The results provide important input for modelling Generalised Parton Distributions (GPDs). In particular, they may allow one to evaluate in a model-dependent way the role of parton helicity-flip GPDs in exclusive$$\rho ^0$$ production.more » « less
- 
            We present a state-of-the-art prediction for cross sections of neutrino deep inelastic scattering (DIS) from nucleon at high neutrino energies, , up to 1000 EeV ( ). Our calculations are based on the latest CT18 NNLO parton distribution functions (PDFs) and their associated uncertainties. To make predictions for the highest energies, we extrapolate the PDFs to small according to several procedures and assumptions, thus affecting the uncertainties at ultrahigh ; we quantify the uncertainties corresponding to these choices. Similarly, we quantify the uncertainties introduced by the nuclear corrections that are required to evaluate neutrino-nuclear cross sections for the neutrino observatories. These results can be applied to currently running astrophysical neutrino observatories, such as IceCube and KM3NeT, as well as various future experiments that have been proposed.more » « less
- 
            Incoherent photoproduction in heavy ion ultraperipheral collisions (UPCs) provides a sensitive probe of localized, fluctuating gluonic structures within heavy nuclei. This Letter reports the first measurement of the photon-nucleon center-of-mass energy ( ) dependence of this process in PbPb UPCs at a nucleon-nucleon center-of-mass energy of 5.02 TeV, using of data recorded by the CMS experiment. The measurement covers a wide range of , probing gluons carrying a fraction of nucleon momentum down to an unexplored regime of . Compared to baseline predictions neglecting nuclear effects, the measured cross sections exhibit significantly greater suppression at lower . Additionally, the ratio of incoherent to coherent photoproduction is found to be constant across the probed and range, disfavoring the establishment of the black disk limit. This Letter provides critical insights into the -dependent evolution of fluctuating gluonic structures within nuclei and calls for further advancements in theoretical models incorporating nuclear shadowing and gluon saturation.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
