skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 2, 2026

Title: Customizing Generated Signs and Voices of AI Avatars: Deaf-Centric Mixed-Reality Design for Deaf-Hearing Communication
This study investigates innovative interaction designs for communication and collaborative learning between learners of mixed hearing and signing abilities, leveraging advancements in mixed reality technologies like Apple Vision Pro and generative AI for animated avatars. Adopting a participatory design approach, we engaged 15 d/Deaf and hard of hearing (DHH) students to brainstorm ideas for an AI avatar with interpreting ability (sign language to English and English to sign language) that would facilitate their face-to-face communication with hearing peers. Participants envisioned the AI avatars to address some issues with human interpreters, such as lack of availability, and provide affordable options to expensive personalized interpreting services. Our findings indicate a range of preferences for integrating the AI avatars with actual human figures of both DHH and hearing communication partners. The participants highlighted the importance of having control over customizing the AI avatar, such as AI-generated signs, voices, facial expressions, and their synchronization for enhanced emotional display in communication. Based on our findings, we propose a suite of design recommendations that balance respecting sign language norms with adherence to hearing social norms. Our study offers insights into improving the authenticity of generative AI in scenarios involving specific and sometimes unfamiliar social norms.  more » « less
Award ID(s):
2118824 2119589
PAR ID:
10635771
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Proceedings of the ACM on Human-Computer Interaction
Volume:
9
Issue:
2
ISSN:
2573-0142
Page Range / eLocation ID:
1 to 31
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Generative AI tools, particularly those utilizing large language models (LLMs), are increasingly used in everyday contexts. While these tools enhance productivity and accessibility, little is known about how Deaf and Hard of Hearing (DHH) individuals engage with them or the challenges they face when using them. This paper presents a mixed-method study exploring how the DHH community uses Text AI tools like ChatGPT to reduce communication barriers and enhance information access. We surveyed 80 DHH participants and conducted interviews with 9 participants. Our findings reveal important benefits, such as eased communication and bridging Deaf and hearing cultures, alongside challenges like lack of American Sign Language (ASL) support and Deaf cultural understanding. We highlight unique usage patterns, propose inclusive design recommendations, and outline future research directions to improve Text AI accessibility for the DHH community. 
    more » « less
  2. Previous research underscored the potential of danmaku–a text-based commenting feature on videos–in engaging hearing audiences. Yet, for many Deaf and hard-of-hearing (DHH) individuals, American Sign Language (ASL) takes precedence over English. To improve inclusivity, we introduce “Signmaku,” a new commenting mechanism that uses ASL, serving as a sign language counterpart to danmaku. Through a need-finding study (N=12) and a within-subject experiment (N=20), we evaluated three design styles: real human faces, cartoon-like figures, and robotic representations. The results showed that cartoon-like signmaku not only entertained but also encouraged participants to create and share ASL comments, with fewer privacy concerns compared to the other designs. Conversely, the robotic representations faced challenges in accurately depicting hand movements and facial expressions, resulting in higher cognitive demands on users. Signmaku featuring real human faces elicited the lowest cognitive load and was the most comprehensible among all three types. Our findings offered novel design implications for leveraging generative AI to create signmaku comments, enriching co-learning experiences for DHH individuals. 
    more » « less
  3. The use of virtual humans (i.e., avatars) holds the potential for interactive, automated interaction in domains such as remote communication, customer service, or public announcements. For signed language users, signing avatars could potentially provide accessible content by sharing information in the signer's preferred or native language. As the development of signing avatars has gained traction in recent years, researchers have come up with many different methods of creating signing avatars. The resulting avatars vary widely in their appearance, the naturalness of their movements, and facial expressions—all of which may potentially impact users' acceptance of the avatars. We designed a study to test the effects of these intrinsic properties of different signing avatars while also examining the extent to which people's own language experiences change their responses to signing avatars. We created video stimuli showing individual signs produced by (1) a live human signer (Human), (2) an avatar made using computer-synthesized animation (CS Avatar), and (3) an avatar made using high-fidelity motion capture (Mocap avatar). We surveyed 191 American Sign Language users, including Deaf ( N = 83), Hard-of-Hearing ( N = 34), and Hearing ( N = 67) groups. Participants rated the three signers on multiple dimensions, which were then combined to form ratings of Attitudes, Impressions, Comprehension, and Naturalness. Analyses demonstrated that the Mocap avatar was rated significantly more positively than the CS avatar on all primary variables. Correlations revealed that signers who acquire sign language later in life are more accepting of and likely to have positive impressions of signing avatars. Finally, those who learned ASL earlier were more likely to give lower, more negative ratings to the CS avatar, but we did not see this association for the Mocap avatar or the Human signer. Together, these findings suggest that movement quality and appearance significantly impact users' ratings of signing avatars and show that signed language users with earlier age of ASL acquisition are the most sensitive to movement quality issues seen in computer-generated avatars. We suggest that future efforts to develop signing avatars consider retaining the fluid movement qualities integral to signed languages. 
    more » « less
  4. Without a commonly accepted writing system for American Sign Language (ASL), Deaf or Hard of Hearing (DHH) ASL signers who wish to express opinions or ask questions online must post a video of their signing, if they prefer not to use written English, a language in which they may feel less proficient. Since the face conveys essential linguistic meaning, the face cannot simply be removed from the video in order to preserve anonymity. Thus, DHH ASL signers cannot easily discuss sensitive, personal, or controversial topics in their primary language, limiting engagement in online debate or inquiries about health or legal issues. We explored several recent attempts to address this problem through development of “face swap” technologies to automatically disguise the face in videos while preserving essential facial expressions and natural human appearance. We presented several prototypes to DHH ASL signers (N=16) and examined their interests in and requirements for such technology. After viewing transformed videos of other signers and of themselves, participants evaluated the understandability, naturalness of appearance, and degree of anonymity protection of these technologies. Our study revealed users’ perception of key trade-offs among these three dimensions, factors that contribute to each, and their views on transformation options enabled by this technology, for use in various contexts. Our findings guide future designers of this technology and inform selection of applications and design features. 
    more » « less
  5. Without a commonly accepted writing system for American Sign Language (ASL), Deaf or Hard of Hearing (DHH) ASL signers who wish to express opinions or ask questions online must post a video of their signing, if they prefer not to use written English, a language in which they may feel less proficient. Since the face conveys essential linguistic meaning, the face cannot simply be removed from the video in order to preserve anonymity. Thus, DHH ASL signers cannot easily discuss sensitive, personal, or controversial topics in their primary language, limiting engagement in online debate or inquiries about health or legal issues. We explored several recent attempts to address this problem through development of “face swap” technologies to automatically disguise the face in videos while preserving essential facial expressions and natural human appearance. We presented several prototypes to DHH ASL signers (N=16) and examined their interests in and requirements for such technology. After viewing transformed videos of other signers and of themselves, participants evaluated the understandability, naturalness of appearance, and degree of anonymity protection of these technologies. Our study revealed users’ perception of key trade-offs among these three dimensions, factors that contribute to each, and their views on transformation options enabled by this technology, for use in various contexts. Our findings guide future designers of this technology and inform selection of applications and design features. 
    more » « less